Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells. Cell viability and genomic DNA stability were assessed using the Sulforhodamine B (SRB) assay and alkaline comet assay, respectively. Reactive oxygen species (ROS) levels were measured using 2,7-dichlorofluorescein diacetate, while the expression level of apoptosis-related genes (p53, Bax, and Bcl-2) were quantified using real-time PCR (qRT-PCR). The SRB cytotoxicity assay revealed that a 48-hour exposure to Ca(OH)NPs caused concentration-dependent cell death and proliferation inhibition in both HSF and HepG2 cells, with IC50 values of 271.93 µg/mL for HSF and 291.8 µg/mL for HepG2 cells. Treatment with the IC50 concentration of Ca(OH)NPs selectively induced significant DNA damage, excessive ROS generation, and marked dysregulation of apoptotic (p53 and Bax) and anti-apoptotic (Bcl-2) gene expression in HepG2 cells, triggering apoptosis. In contrast, exposure of HSF cells to the IC50 concentration of Ca(OH)NPs caused no significant changes in genomic DNA integrity, ROS generation, or apoptotic gene expression. These findings indicate that Ca(OH)NPs exhibit concentration-dependent cytotoxicity in both normal HSF and cancerous HepG2 cells. However, exposure to the IC50 concentration was non-genotoxic to normal HSF cells while selectively inducing genotoxicity and apoptosis in HepG2 cancer cells through DNA breaks and ROS-mediated mechanisms. Further studies are required to explore the biological and toxicological properties and therapeutic potential of Ca(OH)NPs in hepatic cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-86401-4 | DOI Listing |
Sci Rep
January 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Egypt.
Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China. Electronic address:
Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China. Electronic address:
Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanometer system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.
View Article and Find Full Text PDFHepatology
January 2025
Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan.
Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.
NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!