Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests. The natural habitats of black poplar have been severely transformed leading to a significant decline of its population size. Using a set of 18 nuclear microsatellites and geographic location data, we studied 26 remnant populations (1,261 trees) located along the biggest river valleys in Poland. Our main goal was to assess the overall genetic variation and to verify if range fragmentation and habitat transformation have disrupted gene exchange among populations. Genotyping revealed that 261 trees were clones. The level of clonality was higher in more transformed river sections. All populations have probably gone through a drastic genetic bottleneck in the distant past, and most of them have low effective population sizes. Still, the overall level of genetic variation remains high, but certain populations require attention due to their lower genetic variation, higher clonality and strong spatial genetic structure. Genetic differentiation was low, yet Bayesian clustering supported the existence of 11 genetic clusters. According to the results, gene exchange is most prevalent between adjacent populations. Relatively free gene flow occurs only along the Vistula, particularly in its middle section which is characterized by the highest genetic variation. Noticeable genetic structuring was observed along the Oder. Populations located at the range margin showed signs of genetic divergence and reduction of variation. We conclude that human activities have impacted the gene pool of black poplar in Poland by disrupting landscape connectivity and preventing the species from generative reproduction. The study provides practical guidelines on how to develop and implement the conservation program for the gene pool of black poplar in Poland. It also presents a strong case favoring river renaturation and genetic monitoring, particularly concerning keystone species.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-86994-wDOI Listing

Publication Analysis

Top Keywords

black poplar
20
genetic variation
20
genetic
14
genetic structure
8
gene exchange
8
gene pool
8
pool black
8
poplar poland
8
populations
7
variation
6

Similar Publications

Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests.

View Article and Find Full Text PDF

Context: The vegetation composition of northeastern North American forests has significantly changed since pre-settlement times, with a marked reduction in conifer-dominated stands, taxonomic and functional diversity. These changes have been attributed to fire regime shifts, logging, and climate change.

Methods: In this study, we disentangled the individual effects of these drivers on the forest composition in southwestern Quebec from 1830 to 2000 by conducting retrospective modelling using the LANDIS-II forest landscape model.

View Article and Find Full Text PDF

Transgene-free genome editing in poplar.

New Phytol

January 2025

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.

Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.

View Article and Find Full Text PDF

A dihydrochalcone-specific O-methyltransferase from leaf buds of Populus trichocarpa implicated in bud resin formation.

J Exp Bot

January 2025

Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada.

Production of secreted leaf bud resin is a mechanism for temperate trees to protect dormant leaf buds against frost damage, dehydration, and insect herbivory. Bud resins contain a wide variety of special metabolites including terpenoids, benzenoids, and phenolics. The leaf bud resins of Populus trichocarpa and P.

View Article and Find Full Text PDF

Poplar (Populus simoni) plantations are crucial in the sandy regions of western Liaoning, serving key roles in wind protection, sand stabilization, soil moisture regulation, and carbon sequestration. However, challenges such as suboptimal stand quality and limited ecological benefits persist. This study aims to elucidate the growth dynamics of poplar plantations and their impact on soil moisture content and soil carbon content in this region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!