The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jitc-2024-010569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!