Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish. We adopted an extended, GC-rich, and chemically modified sgRNA along with microinjection of the CRISPR ribonucleoprotein (RNP) complex into the yolk sac at the 1-cell stage. We found that genome editing of Sox9a generated a high proportion of heterozygotes with edited alleles in the F generation, indicating biallelic editing. Deep sequencing and mapping the edited cells from early embryos to future tissues revealed that the edited founder has a dominantly edited allele, sox9a M1, accounting for over 99% of alleles in the testis. Specifically, all offspring of the founder inherited the edited allele, suggesting nearly complete editing of the alleles in early germline cells. Overall, the optimization delineates biallelic editing of sox9a in early embryos and transmission of edited alleles to offspring, thus presenting a method to create a desired genetic mutation line of Sox9a avoiding lengthy traditional crossbreeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2025.01.009 | DOI Listing |
Sci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Department of Clinical Laboratory, Nanjing Drum Tower Hospital, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China. Electronic address:
Echinocandin antifungals exhibit high efficacy against drug-resistant strains due to their unique mechanism of action. The production of their semi-synthetic precursors relies solely on microbial metabolism, leading to elevated production costs. Anidulafungin, an excellent echinocandin drug, is derived from echinocandin B (ECB), which is industrially produced by Aspergillus pachycristatus.
View Article and Find Full Text PDFN Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFPhytomedicine
January 2025
Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China; Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China; Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China. Electronic address:
Background: Prostate cancer (PCa) is a significant malignancy in men, particularly challenging in the metastatic stage due to poor prognosis and limited treatment efficacy. Traditional Chinese Medicine, particularly Modified Shenqi Dihuang Decoction (MSDD), has demonstrated promise in inhibiting PCa metastasis, although its mechanisms remain unclear.
Methods: The efficacy of MSDD was evaluated using migration assays and a nude mouse model.
Drug Metab Pharmacokinet
January 2025
Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan. Electronic address:
Various attempts have been made to elucidate the mechanisms of human lung development, its physiological functions, and diseases, in the hope of new drug discovery. Recent technological advancements in experimental animals, cell culture, gene editing, and analytical methods have provided new insights and therapeutic strategies. However, the results obtained from animal experiments are often inconsistent with those obtained from human data because of reproducibility issues caused by structural and physiological differences between mice and humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!