The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN). The findings indicate significant variations in the structures of bacterial, archaeal, and fungal communities across different periods and habitats, with the pH of the water body being a crucial environmental variable affecting microbial community composition. In the frozen period, the functionality of microbial communities, especially in terms of energy metabolism, was significantly impacted, with water bodies experiencing more pronounced effects than sediments. Archaea and fungi significantly contribute to the stability of bacterial communities across various habitats, especially in ice-covered conditions, where stronger associations between bacterial communities, archaea, and fungi promote the microbial communities' adaptability to cold stress. Furthermore, our results indicate that the primary environmental variable influencing the structure of IDENs is the nutrient salt content in both water bodies and sediments. This study broadens our understanding of the responses and feedback mechanisms of inter-domain microbial interactions in lakes influenced by seasonal ice cover.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.120907DOI Listing

Publication Analysis

Top Keywords

ice cover
12
microbial communities
12
water bodies
12
archaea fungi
12
bacteria-archaea bacteria-fungi
8
interdomain ecological
8
seasonal ice
8
periods habitats
8
habitats water
8
bodies sediments
8

Similar Publications

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms.

View Article and Find Full Text PDF

The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN).

View Article and Find Full Text PDF

Evolutionary diversification and succession of soil huge phages in glacier foreland.

Microbiome

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Background: Huge phages (genome size ≥ 200 kb) have been detected in diverse habitats worldwide, infecting a variety of prokaryotes. However, their evolution and adaptation strategy in soils remain poorly understood due to the scarcity of soil-derived genomes.

Results: Here, we conduct a size-fractioned (< 0.

View Article and Find Full Text PDF

Sea ice thickness is an essential variable to understand and forecast the dynamic ice cover and can be estimated by satellite altimetry. Nevertheless, it is affected by uncertainties especially from snow depth, a key parameter to derive it from ice freeboard. We developed a snow depth product based on the differences between CryoSat-2 SAR Ku and IceSat-2 laser altimeters which have different snow penetration capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!