Overexpression of integrin β6 (ITGB6) is crucially linked to the invasion and metastasis of head and neck squamous cell carcinoma (HNSCC). The molecular mechanisms driving ITGB6 upregulation in HNSCC are not well understood. Our study comprehensively analyzed the transcriptional regulation and epigenetic modification mechanisms affecting ITGB6 transcription. We retrospectively evaluated ITGB6 expression using immunohistochemistry on a tissue microarray. Elevated ITGB6 expression in HNSCC specimens correlates with poor clinical prognosis. Using a luciferase reporter assay, site-directed mutagenesis, RNA interference, chromatin immunoprecipitation assay, and a 4-nitroquinoline 1-oxide (4NQO)-induced murine HNSCC model, we have demonstrated that the transcription factor Serum Response Factor (SRF) upregulates ITGB6 transcription. Our results further demonstrated that the histone acetyltransferase (HAT) CBP mediates the hyperacetylation of histones H3 and H4, facilitating their recruitment to the ITGB6 promoter. This recruitment strengthens SRF binding to the ITGB6 promoter. These findings suggest that SRF and CBP-mediated histone hyperacetylation are crucial for ITGB6 overexpression in HNSCC. Epigenetic mechanisms play a critical role in the active transcriptional expression of ITGB6 in HNSCC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2025.111621 | DOI Listing |
Cell Signal
January 2025
Department of Basic Medical Science & Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China. Electronic address:
Overexpression of integrin β6 (ITGB6) is crucially linked to the invasion and metastasis of head and neck squamous cell carcinoma (HNSCC). The molecular mechanisms driving ITGB6 upregulation in HNSCC are not well understood. Our study comprehensively analyzed the transcriptional regulation and epigenetic modification mechanisms affecting ITGB6 transcription.
View Article and Find Full Text PDFArch Toxicol
December 2024
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.
View Article and Find Full Text PDFCell Death Differ
November 2024
Center of Hepato-Pancreato-Biliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
Radiotherapy (RT) is one of the main therapies for hepatocellular carcinoma (HCC), but its effectiveness has been constrained due to the resistance effect of radiation. Thus, the factors involved in radioresistance are evaluated and the underlying molecular mechanisms are also done. In this present study, we identified Integrin β6 (ITGB6) as a potential radioresistant gene through an integrative analysis of transcriptomic profiles, proteome datasets and survival using HCC cases treated with IR.
View Article and Find Full Text PDFRen Fail
December 2024
Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China.
Int J Mol Sci
September 2024
Samuel-Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
Lung cancer is responsible for a high burden of disease globally. Over the last two decades, the discovery of targetable oncogenic genomic alterations has revolutionized the treatment landscape for early-stage and advanced non-small cell lung cancer (NSCLC). New molecular drivers continue to emerge as promising therapeutic targets, including KRAS non-G12C, RAF/MEK, HER3, Nectin-4, folate receptor alpha, ITGB6, and PRMT5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!