The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction. The cellulose was extracted via acid hydrolysis method with mild concentration chemicals. The main aim was to assess the cellulose characteristics and its potential as a reinforcement for composites. Surface, thermal, and physicochemical properties of the micro fillers made of cellulose were the primary areas of research. To determine the composition of the cellulose, extensive chemical characterization analyses were conducted. According to X-ray diffraction studies, Pistia stratiotes leaves cellulose have a crystallinity index of 75.9 % and crystalline size of 8.2 nm. Cellulosic functional groups were revealed by examination using a Fourier Transform Infrared Spectrometer. Scanning electron microscopy images revealed smooth surface and distorted shaped particles. The average particle size, which was calculated using the ImageJ software, was 23.253 ± 6.55 μm. The extracted micro cellulose had an acceptable average roughness value of 28.296 μm, as shown by atomic force microscopy images. Surface properties of the Pistia stratiotes leaves cellulose (PSC) were shown to be conducive to the formation of interfacial bonds with other matrices while composites are being built. The BET surface areas are significantly higher as well. The material degrades only at high temperatures 215 °C, which was analysed by TG analysis. The findings demonstrate that Pistia stratiotes, a plant, outperforms more conventional sources of micro cellulose, such as cotton, hemp, and wood. As a greener alternative to synthetic reinforcements, the recovered micro cellulose has potential uses across numerous industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140217DOI Listing

Publication Analysis

Top Keywords

pistia stratiotes
16
micro cellulose
12
cellulose
11
aquatic plant
8
plant pistia
8
polymer composites
8
stratiotes leaves
8
leaves cellulose
8
microscopy images
8
pistia
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!