The use of treated wastewater (TWW) for agricultural irrigation is becoming more popular as a sustainable alternative to freshwater due to increasing water scarcity. While considerable research exists on the effects of TWW on soil microorganisms, its impact on soil nematodes, key indicators of soil health remains unexplored. This study assessed the effects of two years of TWW irrigation on soil nematode communities in abandoned fields cultivated with Lavender, Anise, Olive and Pomegranate trees. Seasonal soil samples were analyzed for nematode abundance, community composition and ecological indices. TWW irrigation modified soil nematode community structure, favoring the dominance of bacterivores (Acrobeloides) while suppressing plant-parasitic nematodes (Pratylenchus, Bitylenchus). Nematode-based indices showed no significant differences between TWW- and freshwater-irrigated soils, indicating stable and resilient communities. Seasonal precipitation levels strongly influenced nematode abundances, highlighting environmental resilience. Plant species did not create ecological niches, probably due to the strong influence of precipitation and soil properties; nevertheless, plant establishment increased nematode diversity over time, with omnivores and predators emerging alongside bacterivores and fungivores, reflecting recovery dynamics. Even though TWW irrigation is considered a type of disturbance, it facilitated soil nematode diversity and maintained ecological stability. Properly treated wastewater serves as a sustainable irrigation method that enhances soil health and biodiversity, rendering it a viable alternative for agricultural systems in degraded and water-scarce areas under changing climatic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.124231 | DOI Listing |
J Environ Manage
January 2025
University Center of International Programmes of Studies, International Hellenic University, Thessaloniki, 57001, Greece. Electronic address:
The use of treated wastewater (TWW) for agricultural irrigation is becoming more popular as a sustainable alternative to freshwater due to increasing water scarcity. While considerable research exists on the effects of TWW on soil microorganisms, its impact on soil nematodes, key indicators of soil health remains unexplored. This study assessed the effects of two years of TWW irrigation on soil nematode communities in abandoned fields cultivated with Lavender, Anise, Olive and Pomegranate trees.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.
View Article and Find Full Text PDFSci Data
January 2025
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, 350002, China.
Arhopalus unicolor is a carrier of the pine wood nematode (PWN), which causes pine wilt disease, killing pine trees and causing considerable economic and environmental losses. While the A. unicolor mitochondrial genome has been published, a high-quality genome assembly and annotation of A.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Thang Long Institute of Medical and Pharmaceutical Research, Hanoi, Vietnam.
Despite improvements in environmental sanitation and healthcare, the infection rate of soil-transmitted helminths (STHs) remains high in low socioeconomic regions of developing countries including Vietnam. This study aimed to determine the prevalence and intensity of STH infections among primary school children in Meo Vac, Ha Giang: a poor mountainous province in Vietnam. A descriptive cross-sectional study was conducted from October to November 2023, involving 400 participants.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India. Electronic address:
As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!