Sulfur-containing gases produced during the utilization of petroleum fuels are the main cause of air pollution. To remove organic sulfur-containing compounds from simulated gasoline, magnetic hydrophobic Cu-containing SBA-15 mesoporous molecular sieves (PMS-Cu) were prepared by magnetization of the sample, loading and reduction of copper ion and hydrophobic treatment of the sample. The composition and structure of the synthesized composites were characterized by XRD, FTIR, SEM, TEM, and XPS, which proved the successful preparation of the adsorbent PMS-Cu. In addition, it was also investigated on the adsorption capacity of the prepared adsorbent for organic sulfur compounds in simulated gasoline and the factors affecting the desulfurization performance. Through the kinetic study of the adsorption process, it was found that the process conformed to the quasi-secondary kinetic properties, the adsorption process was dominated by chemical adsorption, and internal and external diffusion co-determined the adsorption rate. Moreover, the apparent activation energy of the adsorption process was 50.83 kJ/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124217DOI Listing

Publication Analysis

Top Keywords

simulated gasoline
12
adsorption process
12
magnetic hydrophobic
8
hydrophobic cu-containing
8
compounds simulated
8
adsorption
7
preparation magnetic
4
cu-containing mesoporous
4
mesoporous materials
4
materials performance
4

Similar Publications

Electronic nose (e-nose) systems are well known in breath analysis because they combine breath printing with advanced and intelligent machine learning (ML) algorithms. This work demonstrates development of an e-nose system comprising gas sensors exposed to six different volatile organic compounds (VOCs). The change in the voltage of the sensors was recorded and analyzed through ML algorithms to achieve selectivity and predict the VOCs.

View Article and Find Full Text PDF

Dynamic analysis and optimal control of a hybrid fractional monkeypox disease model in terms of external factors.

Sci Rep

January 2025

Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.

The monkeypox virus (MPXV), which is a member of the Orthopoxvirus genus in the class Poxviridae, is the causative agent of the zoonotic viral infection MPXV. The disease is similar to smallpox, but it is usually less dangerous. This study examines the evolution of the MPXV epidemic in Canada with an emphasis on the effects of control employing actual data.

View Article and Find Full Text PDF

Sulfur-containing gases produced during the utilization of petroleum fuels are the main cause of air pollution. To remove organic sulfur-containing compounds from simulated gasoline, magnetic hydrophobic Cu-containing SBA-15 mesoporous molecular sieves (PMS-Cu) were prepared by magnetization of the sample, loading and reduction of copper ion and hydrophobic treatment of the sample. The composition and structure of the synthesized composites were characterized by XRD, FTIR, SEM, TEM, and XPS, which proved the successful preparation of the adsorbent PMS-Cu.

View Article and Find Full Text PDF

Introduction: Biomarkers play a crucial role across various fields by providing insights into biological responses to interventions. High-throughput gene expression profiling technologies facilitate the discovery of data-driven biomarkers through extensive datasets. This study focuses on identifying biomarkers in gene expression data related to chemical injuries by mustard gas, covering a spectrum from healthy individuals to severe injuries.

View Article and Find Full Text PDF

Freshwater Salinization Mitigated NO Emissions in Submerged Plant-Covered Systems: Insights from Attached Biofilms.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Submerged plants (SMPs) play a critical role in improving water quality and reducing NO greenhouse gas emissions. However, freshwater salinization represents a major environmental challenge in aquatic systems. To investigate the impact of salinization on NO emissions, this study conducted indoor mesocosm experiments simulating SMP and nonsubmerged plant (Non_SMP) areas in freshwater lakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!