As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated. Results indicated that temperature, HPO and HO concentration were positively correlated with the model pollutant degradation (methylene blue) and enzymatic hydrolysis. Under the optimized conditions of temperature (55 °C), HPO concentration (65%), and HO concentration (7%), three typical agricultural residues, including wheat straw, Jerusalem artichoke stalks and corn stover, achieved 95.2%, 94.0% and 98.3% methylene blue degradation, and the corresponding cellulose-glucose conversion was 100%, 97.6% and 100.0%, respectively. While two typical woody residues of oak and birch sawdust achieved methylene blue degradation of 70.2% and 68.0%, and the corresponding cellulose-glucose conversion reached 88.3% and 84.0%, respectively. 90.2-93.6% HPO could be recovered with a stable performance of methylene blue degradation of 98.8-99.7% and cellulose-glucose conversion of 96.1-99.8% in the 5 recycling batches. Overall, this work achieved the "win-win" function on pollutant removal and glucose production, and efficient solvent recycling, which further improved the applicability of PHP pretreatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.124273 | DOI Listing |
The bronchopleural fistula (BPF) is a pathological passageway between the bronchus and the pleural cavity. Diagnosing and localising BPF can be challenging, and the traditional retrograde methylene blue (MB) perfusion method may fail to identify multifocal BPFs. This article reports a novel method for locating multifocal BPFs in patients undergoing concurrent empyema debridement.
View Article and Find Full Text PDFSci Rep
January 2025
Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh (AUUP), Sector-125, Gautam Budh Nagar, Noida, 201313, India.
This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Professor, Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil. Electronic address:
Statement Of Problem: Staining at the gingival margin could impact denture longevity, but the behavior of gingival colored composite resins (GCCs) in this area remains unclear.
Purpose: This in vitro study evaluated surface staining, microleakage, and push-out bond strength at the gingival margin of artificial teeth, comparing two consistencies of GCCs with two resin base materials.
Material And Methods: Specimens included artificial teeth (Ivostar; Ivoclar AG) and two acrylic resin base materials: conventional (Ondacryl; Clássico) and high-impact (Diamond D; Keystone Industries) (n=300).
Cir Esp (Engl Ed)
January 2025
Cirugía General y Aparato Digestivo, Hospital Politécnic i Universitari La Fe, Valencia, Spain.
Surgical resection and lymphadenectomy are the mainstay of curative treatment for oesophagogastric cancer. In this study we evaluate the results of intravascular methylene blue injection into oesophagectomy and gastrectomy specimens as a tool to increase lymph node detection. A prospective and descriptive study was run on 24 patients (11 oesophagus, 13 stomach cases).
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!