The aquatic environment is a major pathway for the spread of antibiotic resistance (AR) among microorganisms. Among these, Klebsiella pneumoniae reveals high genome plasticity, adaptability, and the ability to colonize humans, animals, and the natural environment, awarding it a significant role in the spread of AR. This work presents an in-depth analysis of the whole sequences of 149 K. pneumoniae genomes isolated from surface waters available in databases. The sequences were obtained from 20 countries in five continents. The analyses showed a high genomic diversity of isolates, classifying them into 94 unique sequence types. The isolates carried numerous virulence and drug resistance determinants in their genomes, including genes for carbapenem and colistin resistance. The critical resistance genes were located on plasmids, indicating their high mobility and ease of access in water environments. Sublineage 258 members, in particular ST11, have been identified as important carriers of both important drug resistance determinants and key virulence factors, thus posing a substantial threat to human health. Our analysis revealed the direct transmission of drug-resistant and virulent clinical strains to the natural environment, highlighting the role of K. pneumoniae in the dissemination of drug resistance within the "One Health" framework. Surface waters represent an environment conducive to the spread and evolution of drug resistance, and K. pneumoniae plays a significant role in this process by providing clinically-significant antibiotic resistance genes to environmental recipients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drup.2025.101204DOI Listing

Publication Analysis

Top Keywords

drug resistance
20
surface waters
12
resistance
9
klebsiella pneumoniae
8
antibiotic resistance
8
natural environment
8
resistance determinants
8
resistance genes
8
pneumoniae
5
drug
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!