There is growing concern that exposure to per/polyfluoroalkyl substances (PFAS), persistent chemicals used widely to make consumer products water- or grease-proof, may alter immune function, leading to reduced vaccine response or greater susceptibility to infections. We investigated associations between two legacy PFAS (PFOA and PFOS) and infant cytokine levels measured in newborn dried bloodspots (NDBS) from a large population-based birth cohort in Upstate New York, to determine whether exposure to legacy PFAS is associated with variability in cytokine profiles in newborns. We performed adjusted mixed effects regressions for each cytokine against PFOS and PFOA followed by exploratory factor analysis (EFA) on specific cytokine subsets selected via the prior regressions. Among 3448 neonates (2280 singletons and 1168 twins), significant cytokines were dominated by cytokines negatively associated with the given PFAS. Adjusted single-pollutant models with continuous log-transformed PFOA showed significant negative associations with IL-16 (-0.07, 95% CI: -0.3, -0.1), IL-5 (-0.05, 95%CI: -0.09, -0.02), IL-6 (-0.06, 95%CI: -0.1, -0.02), 6-Ckine (0.06, 95% CI: -0.10, -0.02) and significant positive associations with IL-1α (0.066, 95%CI: 0.03, 0.11), MCP-1 (0.06, 95%CI: 0.03, 0.10). Estimates for PFOS were slightly larger than estimates for PFOA but only significant for 6-Ckine (-0.21, 95%CI: -0.09, -0.33) after correction for multiplicity. Our data consistently suggest that legacy PFAS exposures are associated with disrupted, typically reduced, cytokine levels in neonates, with PFOA exposure resulting in more significant differences in individual cytokines and cytokine groupings than PFOS. Regression by PFAS quartile shows evidence of nonlinear dose-response relationships for most cytokines and cytokine groupings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2025.109288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!