Background And Objective: Atrial fibrillation (AF) is a significant cause of life-threatening heart disease due to its potential to lead to stroke and heart failure. Although deep learning-assisted diagnosis of AF based on ECG holds significance in clinical settings, it remains unsatisfactory due to insufficient consideration of noise and redundant features. In this work, we propose a novel multiscale feature-enhanced gating network (MFEG Net) for AF diagnosis.
Method: The network integrates multiscale convolution, adaptive feature enhancement (FE), and dynamic temporal processing. The multiscale convolution helps capture global and local information. The FE module consists of a soft-threshold residual shrinkage component, a dilated convolution module, and a Squeeze-and-Excitation (SE) module, eliminating redundant features and emphasizing effective features. The design allows the network to focus on the most relevant AF features, thereby enhancing its robustness and accuracy in the presence of noise and irrelevant information. The dynamic temporal module helps the network learn and recognize the time dependence associated with AF. The novel design endows the model with excellent robustness to cope with random noise in real-world environments.
Result: Compared with the state-of-the-art methods, our model exhibits excellent classification performance with an accuracy of 0.930, an F1 score of 0.883, and remarkable resilience to noise interference on the PhysioNet Challenge 2017 dataset. Moreover, the model was trained on the CinC2017 database and validated on the CPSC2018 database and AFDB database, achieving accuracies of 0.908 and 0.938, respectively.
Conclusion: The excellent classification performance of MFEG Net, coupled with its robustness in processing noisy electrocardiogram signals, makes it a powerful method for automatic atrial fibrillation detection. This method has made significant progress over state-of-the-art methods and may alleviate the burden of manual diagnosis for clinical doctors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2025.108606 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!