Background: Postural instability is common in people with Parkinson's Disease (PwPD), increasing their risk of injurious falls. Evidence suggests a sensory reweighting deficit in PwPD, along with compensatory muscle co-contraction in response to postural challenges. During balance tasks requiring sensory reweighting, older adults exhibit elevated postural sway and muscle co-contraction, as well as longer perceptual delays, compared to young adults. Such responses may be exacerbated in PwPD, with implications for fall risk.

Research Question: The aim of this study was to assess postural sway, muscle co-contraction, and perceptual delays in PwPD and healthy age-matched controls during a sensory reweighting balance task.

Methods: Eleven PwPD and 16 control participants completed a sensory reweighting protocol: standing without vision on a fixed platform (2-min), which then undergoes a period of body sway-referencing (3-min) before returning to its fixed position (2.5-min). Anteroposterior (AP) path length, co-contraction index (CCI), and perceptual delay were analysed across task phases.

Results: PwPD showed a longer delay in perceiving when the body sway-referenced platform returned to a fixed position. This perceptual delay in PwPD (43.40-s) was over double that observed in control participants (21.25-s). AP path length and co-contraction aftereffects were longer in control participants than PwPD.

Significance: Where conditions require it, PwPD can effectively adjust their reliance on proprioceptive information for postural control. However, the significant delay shown by PwPD in perceiving changes to sensory conditions could be detrimental during everyday sensory transitions, potentially increasing fall risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2025.01.012DOI Listing

Publication Analysis

Top Keywords

sensory reweighting
20
muscle co-contraction
16
perceptual delays
12
control participants
12
pwpd
9
reweighting balance
8
parkinson's disease
8
co-contraction perceptual
8
postural sway
8
sway muscle
8

Similar Publications

Background: Postural instability is common in people with Parkinson's Disease (PwPD), increasing their risk of injurious falls. Evidence suggests a sensory reweighting deficit in PwPD, along with compensatory muscle co-contraction in response to postural challenges. During balance tasks requiring sensory reweighting, older adults exhibit elevated postural sway and muscle co-contraction, as well as longer perceptual delays, compared to young adults.

View Article and Find Full Text PDF

Objective: To investigate the effects of sensory reweighting on postural control and cortical activity in individuals with Parkinson's disease (PD) compared to age-matched controls using a virtual reality sensory organization test (VR-SOT).

Design: Cross-sectional pilot study.

Setting: University research laboratory.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the sensorimotor function in patients with unilateral chronic ankle instability (CAI) and compare their abilities to healthy controls, focusing on sensory reweighting and vestibular modulation.
  • Twenty individuals with unilateral CAI and twenty healthy participants underwent various tests to evaluate ankle proprioception, plantar sensation, balance, and motor control, using a mix of analyses to compare the groups.
  • Results indicated that those with CAI had increased sensory thresholds for light touch and two-point discrimination bilaterally, moderate deficits in certain motor control measures, and showed postural instability in balance tests when compared to healthy controls.
View Article and Find Full Text PDF

Integrated multisensory feedback plays a crucial role in balance control. Minimal fingertip contact with a surface (light touch), reduces the center of pressure (CoP) by adding sensory information about postural orientation and balance state. Electrical vestibular stimulation (EVS) can increase sway by adding erroneous vestibular cues.

View Article and Find Full Text PDF

The Neuroplastic Outcomes from Impaired Sensory Expectations (NOISE) hypothesis: How ACL dysfunction impacts sensory perception and knee stability.

Musculoskelet Sci Pract

February 2025

Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA; Department of Physical Therapy, College of Health Sciences and Professions, Ohio University, Athens, OH, USA.

Background: The anterior cruciate ligament (ACL) is integral to maintaining knee joint stability but is susceptible to rupture during physical activity. Despite surgical restoration of passive or mechanical stability, patients struggle to regain strength and prior level of function. Recent efforts have focused on understanding how ACL-related changes in the nervous system contribute to deficits in sensorimotor control following injury and reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!