Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients. The study aimed to validate a dedicated triggering algorithm for initiating respiratory-triggered high-pitch computed tomography (RT-HPCT) scans in end inspiration and end expiration in complex and irregular respiratory patterns using an anthropomorphic dynamic chest phantom. Additionally, a patient study was conducted to compare the image quality and lung expansion between RT-HPCT and standard HPCT.
Materials And Methods: The study utilized an algorithm that processes the patient's breathing motion in real-time to determine the appropriate time to initiate a scan. This algorithm was tested on a dynamic, tissue-equivalent chest motion phantom to replicate and simulate 3-dimensional target motion using 28 breathing motion patterns taken from patient with irregular breathing. To evaluate the performance on human patients, prospective RT-HPCT was performed in 18 free-breathing patients. As a reference, unenhanced HPCT of the chest was performed in 20 patients without respiratory triggering during free-breathing. The mean CTDI was 1.73 mGy ± 0.1 mGy for HPCT and 1.68 mGy ± 0.1 mGy for RT-HPCT. For phantom tests, the deviation from the target position of the phantom inlay is known. Image quality is approximated by evaluating stationary versus moving acquisitions. For patient scans, respiratory motion artifacts and inspiration depth were analyzed using expert knowledge of lung anatomy and automated lung volume estimation. Statistical analysis was performed to compare image quality and lung volumes between conventional HPCT and RT-HPCT.
Results: In phantom scans, the average deviation from the desired excursion phase was 1.6 mm ± 4.7 mm or 15% ± 24% of the phantom movement range. In patients, the overall image quality significantly improved with respiratory triggering compared with conventional HPCT (P < 0.001). Quantitative average lung volume was 4.0 L ± 1.1 L in the RT group and 3.6 L ± 1.0 L in the control group.
Conclusions: This study demonstrated the feasibility of using a patient-adaptive respiratory triggering algorithm for high-pitch lung CT in both phantom and patients. Respiratory-triggered high-pitch CT scanning significantly reduces breathing artifacts compared with conventional nontriggered free-breathing scans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0000000000001157 | DOI Listing |
Invest Radiol
January 2025
From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.
Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (A. Schwarz, A. Simon, A.M.); Siemens Healthineers AG, Forchheim, Germany (A. Schwarz, C.H., J.D., A. Simon); Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (F.K.W., S.G., M.S.); and Institut for Radiology, Pediatric and Neuroradiology, Helios Hospital, Schwerin, Germany (H.-J.R.).
Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States.
Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Joint and Sports Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China.
As life expectancy among patients infected with the human immunodeficiency virus (HIV) increases, a growing number of complications have been observed. This population displays an elevated risk of ischemic necrosis of the femoral head in comparison to the general population, which may be attributed to HIV infection, antiretroviral medication use, and hormone application. Patients infected with the human immunodeficiency virus (HIV) who also have necrosis of the femoral head tend to present at an earlier age, with a rapid disease progression and a high incidence of bilateral onset.
View Article and Find Full Text PDFJAMA Otolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
Importance: Airway stenosis is a rare but debilitating disorder that significantly degrades the quality of life in affected patients. Treatments are primarily surgical, and disease management lacks established medical therapies. The North American Airway Collaborative held its third symposium at The Johns Hopkins Hospital in Baltimore, Maryland, on April 15, 2024, focused on strategies to advance the care of these patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!