Dragonfly larvae rearing: experimental insights and best practices.

Environ Entomol

Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.

Published: January 2025

Understanding and optimizing rearing conditions for dragonfly larvae is crucial for ecological research and conservation efforts, yet optimal rearing conditions and general rearing practices are lacking. In this study, we investigated the effect of temperature, amount of oxygen in water, presence of (artificial) plants, and age of eggs on hatchability, survival, and development of dragonfly larvae using the model species Sympetrum striolatum. We conducted three independent experiments and assessed variability between egg clutches of individual females, as well as the occurrence of cannibalism among larvae. Our results showed that egg hatchability varied significantly between individual females and was negatively affected by egg aging and the presence of artificial plants. Larval survival was negatively affected by water temperatures above 24°C, the presence of artificial plants, and egg aging, and positively affected by high feeding frequency, in certain instars. Notably, cannibalism was observed among later instar larvae, especially under higher density conditions. Based on these findings, we provide practical recommendations for optimizing dragonfly larvae rearing protocols, emphasizing the importance of maintaining optimal temperature, appropriate feeding regimes, and managing larval density to reduce cannibalism. This study offers experimental, evidence-based guidelines for dragonfly larvae rearing, contributing to improved research methodologies and conservation efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ee/nvaf001DOI Listing

Publication Analysis

Top Keywords

dragonfly larvae
20
larvae rearing
12
presence artificial
12
artificial plants
12
rearing conditions
8
conservation efforts
8
individual females
8
egg aging
8
rearing
6
larvae
6

Similar Publications

Dragonfly larvae rearing: experimental insights and best practices.

Environ Entomol

January 2025

Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.

Understanding and optimizing rearing conditions for dragonfly larvae is crucial for ecological research and conservation efforts, yet optimal rearing conditions and general rearing practices are lacking. In this study, we investigated the effect of temperature, amount of oxygen in water, presence of (artificial) plants, and age of eggs on hatchability, survival, and development of dragonfly larvae using the model species Sympetrum striolatum. We conducted three independent experiments and assessed variability between egg clutches of individual females, as well as the occurrence of cannibalism among larvae.

View Article and Find Full Text PDF

Threat to the predator suppresses defence of its prey.

R Soc Open Sci

January 2025

Department of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland.

Many studies have shown that prey can optimize their defence mechanisms based on cues indicating predator presence and pressure. However, little is known about whether prey can assess the actual threat by considering both predator density and the motivational state of cannibalistic predators, which can be influenced by threats from higher order predators. We conducted laboratory experiments to test the hypothesis that high predator density, combined with chemical cues indicating predator stress (e.

View Article and Find Full Text PDF

Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.

View Article and Find Full Text PDF

Background: Members of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches.

View Article and Find Full Text PDF

The final instar larva of the rare species Hämäläinen, 2003 is described and illustrated here for the first time, including a new distribution record from Vietnam. The larva of differs from that of congeneric species by distinct morphological features, including the presence of four setae on the palpal lobe of the labium, the presence of lateral spines on abdominal S5-9, and a long terminal filament on the caudal lamella. We also provide a key to species for the known larvae of the subfamily Platycnemidinae in the Sino-Japanese and Oriental regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!