Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO) by irradiation with terahertz pulses. Resonant excitation of either one of two orthogonal, degenerate vibrational modes determines the sign of the induced chiral order parameter. The optical activity of the photo-induced phases is comparable to the static value of prototypical chiral α-quartz. Our findings offer new prospects for the control of out-of-equilibrium quantum phenomena in complex materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adr4713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!