Mechanical Modulation of S-S and S-T Energy Gaps of 11- and All- Retinal Schiff Bases.

J Phys Chem B

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid E-28871, Spain.

Published: January 2025

The retinal Schiff base is a chromophore of significant biological relevance, as it is responsible for capturing sunlight in rhodopsins, which are photoactive proteins found in various living organisms. Additionally, this chromophore is subjected to various mechanical forces in different proteins, which alter its structure and, consequently, its properties. To thoroughly understand the mechanical response limits of the retinal excitation energy, a simple first-order formalism has been developed to quantify the chromophore's optimal mechanical response to applied external forces (on the order of tens of pN). Additionally, the response to larger forces is analyzed by using an algorithm to explore the potential energy surfaces. It can be concluded that the retinal Schiff base exhibits a significant mechanical response and that the optimal forces and displacements involve certain coordinates typically of low frequency, showing differences between the S and T states, as well as between the 11- and all- isomers. Additionally, the possibility of mechanically modulating the bond length alternation using mechanical forces is ruled out.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c06631DOI Listing

Publication Analysis

Top Keywords

retinal schiff
12
mechanical response
12
11- all-
8
schiff base
8
mechanical forces
8
mechanical
6
forces
5
mechanical modulation
4
modulation s-s
4
s-s s-t
4

Similar Publications

Mechanical Modulation of S-S and S-T Energy Gaps of 11- and All- Retinal Schiff Bases.

J Phys Chem B

January 2025

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid E-28871, Spain.

The retinal Schiff base is a chromophore of significant biological relevance, as it is responsible for capturing sunlight in rhodopsins, which are photoactive proteins found in various living organisms. Additionally, this chromophore is subjected to various mechanical forces in different proteins, which alter its structure and, consequently, its properties. To thoroughly understand the mechanical response limits of the retinal excitation energy, a simple first-order formalism has been developed to quantify the chromophore's optimal mechanical response to applied external forces (on the order of tens of pN).

View Article and Find Full Text PDF

Development of self-healing hydrogels to support choroidal endothelial cell transplantation for the treatment of early age related macular degeneration.

Acta Biomater

December 2024

Institute for Vision Research, Carver College of Medicine; University of Iowa, Iowa City, IA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA. Electronic address:

In retinal diseases such as age-related macular degeneration (AMD) and choroideremia, a key pathophysiologic step is loss of endothelial cells of the choriocapillaris. Repopulation of choroidal vasculature early in the disease process may halt disease progression. Prior studies have shown that injection of donor cells in suspension results in significant cellular efflux and poor cell survival.

View Article and Find Full Text PDF

Structural Evolution of Retinal Chromophore in Early Intermediates of Inward and Outward Proton-Pumping Rhodopsins.

J Phys Chem B

January 2025

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Proton-pumping rhodopsins, which consist of seven transmembrane helices and have a retinal chromophore bound to a lysine side chain through a Schiff base linkage, offer valuable insights for developing unidirectional ion transporters. Despite identical overall structures and membrane topologies of outward and inward proton-pumping rhodopsins, these proteins transport protons in opposing directions, suggesting a rational mechanism that enables protons to move in different directions within similar protein structures. In the present study, we clarified the chromophore structures in early intermediates of inward and outward proton-pumping rhodopsins.

View Article and Find Full Text PDF

The primary photoisomerization reactions of the all- to 13- and 11- to all- retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all- form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of and RPSB isomers in both the initial forms and first photoproducts of microbial rhodopsin 2 (KR2) and bacteriorhodopsin (BR), and animal visual rhodopsin (Rho).

View Article and Find Full Text PDF

Study of Photoselectivity in Linear Conjugated Chromophores Using the XMS-CASPT2 Method.

ACS Phys Chem Au

November 2024

Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Center for Scientific Computing, Theory, and Data, Paul Scherrer Institute, 5232 Villigen, Switzerland.

Photoisomerization, the structural alteration of molecules upon absorption of light, is crucial for the function of biological chromophores such as retinal in opsins, proteins vital for vision and other light-sensitive processes. The intrinsic selectivity of this isomerization process (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!