The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Published: January 2025

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM. SO42- and PO43- exhibited less impact. Further studies with electrochemical characterizations and radical quenching experiments illustrate the mechanisms of how the anions may impact EO performance.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317696PLOS

Publication Analysis

Top Keywords

perfluoroalkyl acids
8
porous magnéli
8
magnéli phase
8
phase titanium
8
titanium suboxide
8
suboxide anodes
8
impact anions
4
anions electrooxidation
4
electrooxidation perfluoroalkyl
4
acids porous
4

Similar Publications

The impact of anions on electrooxidation of perfluoroalkyl acids by porous Magnéli phase titanium suboxide anodes.

PLoS One

January 2025

Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.

Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure.

View Article and Find Full Text PDF

Observational studies on per- and polyfluoroalkyl substance toxicity in marine species: hints for the extrapolation of a screening value.

Environ Toxicol Chem

January 2025

Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy.

A statistical procedure has been developed to derive a screening value from an observational study related to the developmental toxicity observed in loggerhead turtle (Caretta caretta) eggs exposed to long chain per- and polyfluoroalkyl substances (PFAS). A dataset of 41 nests in which the hatching rate was inversely correlated with the increase in the PFAS concentration in unhatched eggs was processed via a categorical regression approach. After outliers identification and removal, categorical regression analysis tested the relationships of the outcomes with the following parameters: perfluoro-nonanoic (PFNA), decanoic (PFDA), undecanoic (PFUdA), and dodecanoic (PFDoA) acids; perfluoroctansulfonate (PFOS); polychlorobiphenyls (PCBs) 28, 52, 101, 138, 153, 180; lead (Pb), total mercury (Hgtot), and cadmium (Cd); and other factors, such as "nest site," "clutch size," "incubation duration," and "nest minimum depth," as confounders/modifiers of the hatching rate.

View Article and Find Full Text PDF

This study was performed to evaluate the occurrence of perfluorinated substances (PFAS) in European perch (Perca fluviatilis) samples from Latvian freshwater bodies. Twenty-nine samples of perch tissue homogenates were analyzed on the content of PFAS representing different sampling sites to cover all territory of Latvia evenly. The total PFAS concentrations (∑) ranged from 0.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!