Genome-Wide Analysis of the CsAP2/ERF Gene Family of Sweet Orange (Citrus sinensis) and Joint Analysis of Transcriptional Metabolism under Salt Stress.

Ann Bot

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.

Published: January 2025

Background: Sweet orange is an important economic crop, and salt stress can inhibit its growth and development.

Methods: In this study, we identified AP2/ERF genes in sweet orange via bioinformatics and performed a combined transcription‒metabolism analysis, which revealed for the first time the integrated molecular mechanism of salt stress regulation in sweet orange.

Key Results: A total of 131 sweet orange AP2/ERF genes were identified and categorized into five groups. By comparing the tertiary protein structures of these genes with those of Arabidopsis, we found that five sweet orange genes (CsERF38, CsERF41, CsERF42, CsERF84, and CsERF110) related to salt stress and ethylene transcription are highly similar in composition and structure to those of Arabidopsis, and we hypothesize that they have similar functions. ABREs and AREs were the predominant cis-acting elements in the sweet orange AP2/ERF gene family, and both were associated with salt stress. The AP2/ERF gene family was verified to be involved in the salt stress response via qRT-PCR. According to the differentially abundant metabolite KEGG network, we chose the differentially abundant metabolites ET, GA, and JA as the primary research objects; the CsAP2/ERF gene family is an ethylene-responsive element binding factor.

Conclusion: In this study, the complete framework of the AP2/ERF gene family was constructed for the first time. A model of salt stress regulation in sweet oranges was established.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcaf006DOI Listing

Publication Analysis

Top Keywords

salt stress
28
sweet orange
24
gene family
20
ap2/erf gene
12
csap2/erf gene
8
sweet
8
ap2/erf genes
8
stress regulation
8
regulation sweet
8
orange ap2/erf
8

Similar Publications

Genome-Wide Analysis of the CsAP2/ERF Gene Family of Sweet Orange (Citrus sinensis) and Joint Analysis of Transcriptional Metabolism under Salt Stress.

Ann Bot

January 2025

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.

Background: Sweet orange is an important economic crop, and salt stress can inhibit its growth and development.

Methods: In this study, we identified AP2/ERF genes in sweet orange via bioinformatics and performed a combined transcription‒metabolism analysis, which revealed for the first time the integrated molecular mechanism of salt stress regulation in sweet orange.

Key Results: A total of 131 sweet orange AP2/ERF genes were identified and categorized into five groups.

View Article and Find Full Text PDF

CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions.

Arch Microbiol

January 2025

Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.

Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.

View Article and Find Full Text PDF

Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.

View Article and Find Full Text PDF

The current study aimed to assess the preventive effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) against Oxaliplatin (OXA)-induced DNA damage, hepatic injury, and oxidative stress. The in vitro cytotoxic and genotoxic effects of OXA and ALEPL on HCT116 colon cancer cells were evaluated using the MTT (Tetrazolium salt reduction) assay and comet assay. The in vivo study involved 24 female NMRI (Naval Medical Research Institute) mice that were equally divided into four groups as follows: Control group, ALEPL-treated group (100 mg/kg), OXA-treated group (7 mg/kg), and ALEPL-treated group (100mg/kg) + OXA (7mg/kg).

View Article and Find Full Text PDF

Genome-wide DNA methylation analysis of sorghum leaves following foreign GA3 exposure under salt stress.

Genomics

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Sorghum is an increasingly popular topic of research in elucidating survival and adaptation approaches to augmented salinity. Nonetheless, little is known about the outcome and modulatory networks involved in the gibberellic acid (GA3)-induced salt stress alleviation in sorghum. Here, we identified 50 mg/L GA3 as the optimal concentration for sorghum ('Jitian 3') development under salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!