Toluene intoxication constitutes a persistent public health problem worldwide. While most organs can be damaged, the brain is a primary target whether exposure is accidental, occupational, or recreational. Interventions to prevent/revert brain damage by toluene are curtailed by the scarce information on the molecular targets and mechanisms mediating toluene's brain toxicity and the common exposure to other neurotoxins and/or coexistence of neurological/psychiatric disorders. We examine () the physicochemical properties of toluene that allow this inhalant to primarily target the lipid-rich brain; () the cell types targeted by toluene (neurons, different types of glia), while considering a cerebrovascular component; and () putative molecular mechanisms by which toluene may modify receptor function while analyzing structural features that allow toluene to directly interact with membrane lipids or specific proteins. This information constitutes a stepping stone to design pharmacotherapies that counteract toluene brain intoxication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-pharmtox-012924-010532 | DOI Listing |
Annu Rev Pharmacol Toxicol
January 2025
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; email:
Toluene intoxication constitutes a persistent public health problem worldwide. While most organs can be damaged, the brain is a primary target whether exposure is accidental, occupational, or recreational. Interventions to prevent/revert brain damage by toluene are curtailed by the scarce information on the molecular targets and mechanisms mediating toluene's brain toxicity and the common exposure to other neurotoxins and/or coexistence of neurological/psychiatric disorders.
View Article and Find Full Text PDFNanoscale
January 2025
Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.
View Article and Find Full Text PDFAdv Mater
January 2025
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Herein, a parallel "bifunctional group" modulation method is proposed to achieve controlled modulation of the emission wavelength and full-width at half-maximum (FWHM) values. As a result, three proof-of-concept emitters, namely DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh, are designed and synthesized, with the first functional dibenzo[b,d]thiophene unit concurrently reducing the bandgap and elevate their triplet state energy. A second functional group 1,1':3',1″-triphenyl, and electron acceptors 1,3-difluorobenzene and benzonitrile, respectively, to deepen the HOMO and LUMO levels.
View Article and Find Full Text PDFCEN Case Rep
January 2025
Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
Metabolic acidosis (MA) is common in daily clinical settings and requires evaluation not only by serum anion gap (AG) but also by urine AG (UAG) and urine osmolal gap (UOG) to investigate potential causes and determine appropriate treatment. Herein, we report an educational case of non-gap (normal AG) MA (pH 7.16, HCO 8.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.
Three Sm(II) dibenzo-24-crown-8 (db24c8) complexes were synthesized in anhydrous, air-free conditions via the reaction of SmI with db24c8 and tetrabutylammonium tetraphenylborate ([TBA][BPh]; where needed) in acetonitrile (CHCN), dimethoxyethane (DME), and tetrahydrofuran (THF) to yield [Sm(db24c8)(CHCN)][BPh][I]·CHCN, [Sm(db24c8)(DME)]I, and [Sm(db24c8)(THF)]I, respectively. In each case, a 10-coordinate, staggered dodecahedral (2:6:2) environment is formed around the Sm center that is completed by either two solvent molecules (CHCN or THF) or one bidentate solvent molecule (DME). Inner-sphere solvent molecules can be excluded by reacting SmI with db24c8 in 1:3 THF:toluene to yield Sm(db24c8)I.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!