The Nozaki-Hiyama-Kishi reaction offers effective and reliable strategies for the preparation of alcohols via carbon-carbon bond formation. Typical methods usually require stoichiometric amounts of chromium salts, co-transition metals, and auxiliary reagents, which limits their practical application in industrial chemistry. To mitigate these limitations, substantial efforts have been made to develop chromium-catalytic approaches. However, an excess of metal reductants or expensive photocatalysts played essential roles during the catalytic cycles. Here, we present a photoactive electron donor-acceptor (EDA) complex-induced chromium-catalyzed route, accomplishing alkyl addition to aldehydes without the requirement of metal reductants or photocatalysts. Furthermore, on the basis of the pH-dependent site-selective hydrogen isotope exchange of alkyl thianthrenium salts, a range of β-deuterated secondary alcohols could be prepared with high efficiency and excellent deuterium incorporation. Mechanistic studies revealed that the photoinduced intramolecular single-electron transfer of the EDA complex happened to provide alkyl radicals that are captured by Cr(II) species to facilitate the subsequent carbon-carbon bond formation. Meanwhile, the excited Hantzsch ester could act as a terminal reductant for the turnover of the chromium catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04516DOI Listing

Publication Analysis

Top Keywords

alkyl addition
8
addition aldehydes
8
photoactive electron
8
electron donor-acceptor
8
carbon-carbon bond
8
bond formation
8
metal reductants
8
thianthrenium-enabled chromium-catalyzed
4
chromium-catalyzed deuterated
4
alkyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!