SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation. As an outstanding source of anthocyanins, eggplant (Solanum melongena L.) is extremely beneficial for human health. In the process of anthocyanin biosynthesis in eggplant, the basic helix-loop-helix (bHLH) transcription factor family plays a crucial role. However, the bHLH gene family is extensive, making it difficult to systematically screen and analyze their functions using conventional methods. We studied the phylogeny, gene structure, conserved motifs, promoter element, and chromosomal location of the 166 SmbHLH genes in the recently released eggplant genome. Through the analysis of transcriptomic data of eggplant peel treated with light, it was found that SmbHLH93 was the most responsive to light among those of unknown function. Additionally, it was discovered that SmbHLH93 plays a positive regulatory role in anthocyanin synthesis through dual-luciferase reporter assay(dual-LUC) and genetic transformation in Arabidopsis (Arabidopsis thaliana). Furthermore, experiments involving yeast two-hybrid (Y2H), luciferase complementation assay (Split-LUC), and tobacco transient transformation demonstrated that SmbHLH93 has the ability to interact with SmMYB1 in order to enhance anthocyanin accumulation. This study will serve as a foundation for exploring the role of SmbHLH transcription factors in anthocyanin biosynthesis in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-025-03429-6DOI Listing

Publication Analysis

Top Keywords

anthocyanin biosynthesis
16
smbhlh genes
8
biosynthesis smbhlh93can
8
interact smmyb1
8
anthocyanin accumulation
8
anthocyanin
7
eggplant
5
comprehensive genomic
4
genomic analysis
4
analysis smbhlh
4

Similar Publications

SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.

View Article and Find Full Text PDF

AaMYB61-like and AabHLH137 jointly regulate anthocyanin biosynthesis in Actinidia arguta.

BMC Plant Biol

January 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.

Background: Red Actinidia arguta has recently become highly popular because of its red appearance resulting from anthocyanin accumulation, and has gradually become an important breeding direction. However, regulators involved in anthocyanin biosynthesis have not been fully characterized in A. arguta.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Background: Tectorigenin (TEC) is a monomer of anthocyanin, which we found exhibits hepatoprotective effects. tRNA-derived fragments (tRFs) and ferroptosis play important roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Recent discoveries have revealed that histone lactylation and acetylation play a crucial role in connecting cellular metabolism and epigenetic regulation through post-translational modification of histones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!