Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases. PARP12, a member of this family, has been associated with the onset of drug resistance in oestrogen receptor-positive breast cancers, making this enzyme a promising drug target. The molecular basis underlying its involvement in the acquisition of resistance are unknown to date. Here, we demonstrate that PARP12-mediated mono-ADP-ribosylation of AKT is required for AKT activation whilst the absence of PARP12 leads to apoptosis induction in a subset of oestrogen receptor-positive breast cancer cells. Our data show that transcriptional inhibition of PARP12 correlates with an increased DNA-damage induction, mirrored by augmented p53 nuclear localisation and enhanced p53-AKT interaction. Under these conditions, AKT is functionally incompetent towards its downstream targets FOXO, hence favouring cell death. This is achieved by increasing protein levels of the FOXO1 transcription factor, that in turn activates the apoptotic cascade. Overall, we show a novel regulation step of AKT activation and apoptosis relying on PARP12-mediated mono-ADP-ribosylation and propose PARP12 as a potential pharmacological target to be exploited as an innovative therapeutical strategy to overcome endocrine resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-025-05586-zDOI Listing

Publication Analysis

Top Keywords

breast cancer
12
akt activation
12
drug resistance
8
endocrine resistance
8
strategy overcome
8
oestrogen receptor-positive
8
receptor-positive breast
8
parp12-mediated mono-adp-ribosylation
8
akt
5
resistance
5

Similar Publications

Objective: This study aims to explore the role of exosome-related genes in breast cancer (BRCA) metastasis by integrating RNA-seq and single-cell RNA-seq (scRNA-seq) data from BRCA samples and to develop a reliable prognostic model.

Methods: Initially, a comprehensive analysis was conducted on exosome-related genes from the BRCA cohort in The Cancer Genome Atlas (TCGA) database. Three prognostic genes (JUP, CAPZA1 and ARVCF) were identified through univariate Cox regression and Lasso-Cox regression analyses, and a metastasis-related risk score model was established based on these genes.

View Article and Find Full Text PDF

Introduction: Breast cancer resistance protein (BCRP) is an efflux membrane transporter that controls the pharmacokinetics of a large number of drugs. Its activity may change when taking some endo- and exogenous substances, thus making it a link in drug interactions.

Aim: The aim of the study was to develop a methodology for testing drugs for belonging to BCRP substrates and inhibitors in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!