Phenomenological Modeling of Antibody Response from Vaccine Strain Composition.

Antibodies (Basel)

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

Published: January 2025

The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in preclinical animal models and in clinical trials. To improve outcomes for such vaccines, it would be useful to develop methods that can predict vaccine efficacies against arbitrary pathogen variants. As a step in this direction, here, we describe a simple biologically motivated model of antibody reactivity elicited by nanoparticle-based vaccines using only antigen amino acid sequences, parametrized with a small sample of experimental antibody binding data from influenza or SARS-CoV-2 nanoparticle vaccinations. : The model is able to recapitulate the experimental data to within experimental uncertainty, is relatively insensitive to the choice of the parametrization/training set, and provides qualitative predictions about the antigenic epitopes exploited by the vaccine, which are testable by experiment. For the mosaic nanoparticle vaccines considered here, model results suggest indirectly that the sera obtained from vaccinated mice contain bnAbs, rather than simply different strain-specific Abs. Although the present model was motivated by nanoparticle vaccines, we also apply it to a mutlivalent mRNA flu vaccination study, and demonstrate good recapitulation of experimental results. This suggests that the model formalism is, in principle, sufficiently flexible to accommodate different vaccination strategies. Finally, we show how the model could be used to rank the efficacies of vaccines with different antigen compositions. : Overall, this study suggests that simple models of vaccine efficacy parametrized with modest amounts of experimental data could be used to compare the effectiveness of designed vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antib14010006DOI Listing

Publication Analysis

Top Keywords

vaccine design
8
vaccines antigen
8
experimental data
8
nanoparticle vaccines
8
vaccine
6
vaccines
6
model
6
experimental
5
phenomenological modeling
4
modeling antibody
4

Similar Publications

Despite significant global reductions in cases of pneumonia during the last 3 decades, pneumonia remains the leading cause of post-neonatal mortality in children aged <5 years. Beyond the immediate disease burden it imposes, pneumonia contributes to long-term morbidity, including lung function deficits and bronchiectasis. Viruses are the most common cause of childhood pneumonia, but bacteria also play a crucial role.

View Article and Find Full Text PDF

Engineering of a lysosomal-targeted GAA enzyme.

Protein Eng Des Sel

January 2025

Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.

Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.

View Article and Find Full Text PDF

Human astroviruses (HAstVs) are a leading cause of viral childhood diarrhea that infects nearly every individual during their lifetime. Although human astroviruses are highly prevalent, no approved vaccine currently exists. Antibody responses appear to play an important role in protection from HAstV infection; however, knowledge about the neutralizing epitope landscape is lacking, as only three neutralizing antibody epitopes have previously been determined.

View Article and Find Full Text PDF

Phenomenological Modeling of Antibody Response from Vaccine Strain Composition.

Antibodies (Basel)

January 2025

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in preclinical animal models and in clinical trials. To improve outcomes for such vaccines, it would be useful to develop methods that can predict vaccine efficacies against arbitrary pathogen variants.

View Article and Find Full Text PDF

Maternal-fetal cytokine profiles in acute SARS-CoV-2 "breakthrough" infection after COVID-19 vaccination.

Front Immunol

January 2025

Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

Objective: Vaccination is protective against severe COVID-19 disease, yet whether vaccination reduces COVID-19-associated inflammation in pregnancy has not been established. The objective of this study is to characterize maternal and cord cytokine profiles of acute SARS-CoV-2 "breakthrough" infection (BTI) after vaccination, compared with unvaccinated infection and uninfected controls.

Study Design: 66 pregnant individuals enrolled in the MGH COVID-19 biorepository (March 2020-April 2022) were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!