This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs. With increasing commercial relevance, the absolute quantification of mAbs, traceable to an international standard system of units (SI units), has attracted attention from science, industry, and national metrology institutes (NMIs). Quantification of proteotypic peptides after enzymatic digestion using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has emerged as the most viable strategy, though methods targeting intact mAbs are still being explored. We review peptide-based quantification, focusing on critical experimental steps like denaturation, reduction, alkylation, choice of digestion enzyme, and selection of signature peptides. Challenges in amino acid analysis (AAA) for quantifying pure mAbs and peptide calibrators, along with software tools for targeted MS data analysis, are also discussed. Short explanations within each chapter provide newcomers with an overview of the field's challenges. We conclude that, despite recent progress, further efforts are needed to overcome the many technical hurdles along the quantification workflow and discuss the prospects of developing standardized protocols and certified reference materials (CRMs) for this goal. We also suggest future applications of newer technologies for absolute mAb quantification.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antib14010003DOI Listing

Publication Analysis

Top Keywords

absolute quantification
12
mass spectrometry
12
quantification
7
mabs
7
challenges
4
challenges insights
4
absolute
4
insights absolute
4
quantification recombinant
4
recombinant therapeutic
4

Similar Publications

This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs.

View Article and Find Full Text PDF

Development of a droplet digital PCR method for the detection of .

Pract Lab Med

January 2025

Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.

Background: Human infection with is mainly manifested as non-gonococcal urethritis, where it can lead to cervicitis, premature rupture of membranes and abortion in women, as well as infertility in males, which becomes a major problem in clinical diagnosis and treatment. At present, real-time fluorescence quantitative PCR and culture are the two main methods for detecting UU. The real-time fluorescence quantitative PCR method is cumbersome and cannot accomplish absolute quantification on nucleic acids, while the cultivation method has limitations such as low sensitivity and being time-consuming.

View Article and Find Full Text PDF

Background: Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective.

View Article and Find Full Text PDF

High-throughput screening to identify endocrine disruptors: Contribution of low-resolution tandem MS and high-resolution MS.

Anal Chim Acta

February 2025

Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.

Background: Considering the large diversity of chemicals present in the environment and the need to study their effects (alone or as mixtures), the development of high-throughput in vitro assays in line with the Replacement, Reduction, Refinement (3R) strategy is essential for chemical risk assessments.

Results: We developed a robust analytical workflow based on both low resolution tandem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) to quantify 13 steroids in NCI-H295R cell culture medium, human plasma and serum. The workflow was validated by screening media from the NCI-H295R cell line exposed in dose-response experiments to 5 endocrine disruptors (EDs) such as bisphenol A, prochloraz, ketoconazole, atrazine and forskolin.

View Article and Find Full Text PDF

Albumin and γ-globulin concentrations in subcutaneous adipose tissues (SAT) have been quantified by multivariate regression based on admittance relaxation time distribution (mraRTD) under the fluctuated background of sodium electrolyte concentration. The mraRTD formulates P = Ac + Ξ (P: peak matrix of distribution function magnitude ɣP and frequency τP, c: concentration matrix of albumin cAlb, γ-globulin Gloc, and sodium electrolyte Nac, A: coefficient matrix of a multivariate regression model, and Ξ: error matrix). The mraRTD is implemented by two processes which are: 1) the training process of A through the maximum likelihood estimation of P and 2) the quantification process of cAlb, Gloc, and Nac through the model prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!