3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning. Based on these datasets, a network deep reinforcement learning (N-DRL) framework is developed to optimize its stability, effectively balancing weight reduction with the maintenance of structural integrity. The results reveal a pronounced correlation between the total fiber length in 3D-DFNS and its mechanical properties, where longer fibers enhance stress distribution and stability. Additionally, fiber orientation is also considered as a potential factor influencing stress growth values. Furthermore, the N-DRL model demonstrates superior performance compared to traditional approaches in optimizing network stability while minimizing mass and computational cost. Structural integrity is significantly improved through the addition of triple junctions and the reduction of higher-order nodes. In summary, this study leverages machine learning to optimize biomimetic 3D-DFNS, providing novel insights into the design of lightweight, high-strength materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202413293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!