The traditional perfluorosulfonic acid proton exchange membrane is crucial for proton exchange membrane fuel cells, but its high cost has impeded broader commercialization. In this study, a novel concept of a cost-effective and stable vertically aligned polydopamine-intercalated montmorillonite membrane (VAPMM) is introduced. 2D nanochannels formed within the lamellar structure of polydopamine-coated montmorillonite nanosheets provide a significant stable in-plane proton conductivity of 0.58 S cm. The stacked lamellar structure is embedded in epoxy resin to maintain its orientation. Subsequently, precise slicing along the vertical direction of the 2D nanochannels yields a thin film ≈150 µm thick, featuring vertically aligned proton conductive transmembrane nanochannels. When assembled into a membrane electrode assembly with commercial gas diffusion electrodes, the VAPMM exhibits a maximum areal peak power density of up to 534.00 mW cm at 75 °C with 100% RH, surpassing by more than four times that of a commercial Nafion membrane of similar thickness (N117, 183 µm, 116.17 mW cm). This study outlines a pathway for developing next-generation proton exchange membranes that are both cost-effective and highly stable. Additionally, it introduces a straightforward method to create fully vertically aligned transmembrane nanochannels while preserving the interlayer structure, which is crucial for advancements in nanofluidics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202409192 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.
View Article and Find Full Text PDFAnal Methods
January 2025
ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.
View Article and Find Full Text PDFSmall
January 2025
Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
The traditional perfluorosulfonic acid proton exchange membrane is crucial for proton exchange membrane fuel cells, but its high cost has impeded broader commercialization. In this study, a novel concept of a cost-effective and stable vertically aligned polydopamine-intercalated montmorillonite membrane (VAPMM) is introduced. 2D nanochannels formed within the lamellar structure of polydopamine-coated montmorillonite nanosheets provide a significant stable in-plane proton conductivity of 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemical Engineering, CHINA.
The development of efficient and durable oxygen evolution reaction (OER) catalysts is crucial for advancing proton exchange membrane water electrolysis (PEMWE) technology, especially in the pursuit of non-iridium alternatives. Herein, we report a Zn, W co-doping Ru3Zn0.85W0.
View Article and Find Full Text PDFNat Commun
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France.
The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!