Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments. Superhydrophobic SERS substrates were prepared by using a liquid-liquid self-assembly method. The superhydrophobicity facilitated analyte enrichment, and monolayer Au nanoparticles (AuNPs) enhanced the Raman signals. The detection limit for Raman probe crystal violet (CV) using this substrate reached nanomolar (10 M), with an RSD of 9.96% across a 40 × 40 μm area (441 spots), demonstrating excellent sensitivity and reproducibility. This method successfully detected polystyrene (PS) plastics ranging from 30 to 1000 nm in water with concentrations as low as 0.03 μg/mL. Additionally, nanoscale polyethylene terephthalate (PET) particles were detected in bottled water samples. This approach offers a promising platform for analyzing trace nanoplastics in environmental water samples and addresses the needs of environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05554DOI Listing

Publication Analysis

Top Keywords

trace nanoplastics
12
sers substrates
8
detecting trace
8
water samples
8
nanoplastics
5
superhydrophobic surface-enhanced
4
surface-enhanced raman
4
raman spectroscopy
4
spectroscopy sers
4
substrates sensitive
4

Similar Publications

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Numeric uptake drives nanoplastic toxicity: Size-effects uncovered by toxicokinetic-toxicodynamic (TKTD) modeling.

J Hazard Mater

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Predicting nanoplastic bioaccumulation and toxicity using process-based models is challenging due to the difficulties in tracing them at low concentrations. This study investigates the size-dependent effects of nanoplastic exposure on Daphnia magna using a toxicokinetic-toxicodynamic (TKTD) model. Palladium-doped fluorescent nanoplastics in three sizes (30-nm, 66-nm, 170-nm) were tested at two numeric exposure concentrations.

View Article and Find Full Text PDF

The proliferation of micro/nanoplastics (MNPs) has emerged as a pivotal environmental issue, largely due to their potential for human exposure. Consequently, the development of sensitive and efficient detection methodologies is paramount for elucidating their environmental footprint. Here, we report a novel three-dimensional (3D) surface-enhanced Raman scattering (SERS) sensor, which integrate TiCT/TiO/WO semiconductor heterostructure, for the rapid and sensitive detection of MNPs in environmental matrices.

View Article and Find Full Text PDF

The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization.

View Article and Find Full Text PDF

Enhanced immobilization of trace nickel by nanoplastic-Fe-Mn oxide complexes in sedimentary systems.

Sci Total Environ

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China. Electronic address:

Fe/Mn oxides are widely distributed mineral components in marine sediments and act as significant scavengers of trace metals. The emergence of plastic-rock complexes has led to an increasing recognition that plastics may influence the environmental behavior of minerals. Plastics, especially nanoplastics, can affect the formation of Fe/Mn oxides and their ability to immobilize heavy metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!