Film capacitors are widely used in advanced electrical and electronic systems. The temperature stability of polymer dielectrics plays a critical role in supporting their performance operation at elevated temperatures. For the last decade, the investigations for new polymer dielectrics with high energy storage performance at higher temperatures (>200 °C) have attracted much attention and numerous strategies have been employed. However, there is currently still a large gap between lab research and large-scale production. In this review, the main effects of high temperature on the dielectric properties are analyzed and core modification strategies are summarized. The scientific and technological reasons for the performance difference between lab research and practical application are also discussed. Further, several processes for large-scale film preparation and typical device structure design are reviewed. The current research and product launches pertaining of high-temperature film capacitors are also summarized. Conclusive insights and future perspectives are delineated to offer strategic direction for the ongoing and prospective innovation in polymer dielectric materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202411507 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Thin film Energy Storage Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203Tamil Nadu India.
Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin MnO thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance.
View Article and Find Full Text PDFAdv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
The development of aqueous zinc metal batteries (AZMBs) is hampered by dendrites and side reactions induced by reactive HO. In this study, a hydrated eutectic electrolyte with restrictive water consisting of zinc trifluoromethanesulfonate (Zn(OTf)), 1,3-propanediol (PDO), and water is developed to improve the stability of the anode/electrolyte interface in AZMBs via the formation of a water-deficient interface. Additionally, PDO participates in the Zn solvation structure and inhibits the movement of water molecules.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!