Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.7 cm) two terminal molecular junctions. The molecular junctions exhibit non-volatile resistive switching at a relatively lower operational voltage, ±1 V, high ON/OFF electrical current ratio (≈10), low-energy consumption (SET/RESET = 27.94/14400 nJ), good cyclic stability (>300 cycles), and switching speed (SET/RESET = 25 ms/20 ms). A computational study suggests that accessible frontier molecular orbitals of metal-complex to the Fermi level of ITO electrodes facilitate charge transport at a relatively lower bias followed by a filamentformation. An extensive analysis is performed of the performance of binary neural networks exploiting the current-voltage features of the devices as binary synaptic weights and exploring their potential for neuromorphic logic-in-memory implementation of IMPLICATION (IMPLY) operation which can realize universal gates. The comprehensive analysis indicates that the proposed redox-active complex-based memory device may be a promising candidate for high-density data storage, energy-efficient implementation of neuromorphic networks with software-level accuracy, and logic-in-memory implementations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202401911DOI Listing

Publication Analysis

Top Keywords

oligomeric films
8
ito electrode
8
molecular junctions
8
electrosynthesis ii-polypyridyl
4
ii-polypyridyl oligomeric
4
ito
4
films ito
4
electrode terminal
4
terminal non-volatile
4
non-volatile memory
4

Similar Publications

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

The profound stability of bacterial spores makes them a promising platform for biotechnological applications like biocatalysis, bioremediation, drug delivery, etc. However, though the spore is composed of >40 proteins, only ∼12 have been explored as fusion carriers for protein display. Here, we assessed the suitability of 33 spore proteins (SPs) as enzyme display carriers by direct allele tagging at native genomic loci.

View Article and Find Full Text PDF

The key first step in the oligomerization of monomers is to find an initiator, which is usually done by thermolysis or photolysis. We present a markedly different approach that initiates acid-catalyzed polymerization at the surface of water films or water droplets, which is the reactive phase during a wet-dry cycle in freshwater hot springs associated with subaerial volcanic landmasses. We apply this method to the oligomerization of different nucleic acids, a topic relevant to how it might be possible to go from simple nucleic acid monomers to long-chain polymers, a key step in forming the building blocks of life.

View Article and Find Full Text PDF

The homochirality of life remains one of the most enigmatic issues in the study of the origin of life. A proposed mechanism for symmetry breaking involves irradiation by circularly polarized light (CPL). To investigate the photoreaction of amino acids under CPL irradiation, a vacuum ultraviolet (VUV) CPL irradiation system was developed at the synchrotron light source UVSOR-III.

View Article and Find Full Text PDF

Development of Functional Biointerface Using Mixed Zwitterionic Silatranes.

Langmuir

November 2024

Department of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan.

Strategies to design multifunctional interfaces for biosensors have been extensively investigated to acquire optimal sensitivity, specificity, and accuracy. However, heterogeneous ingredients in clinical samples inevitably generate background signals, exposing challenges in biosensor performance. Polymer coating has been recognized as a crucial method to functionalize biointerfaces by providing tailored properties that are essential for interacting with biological systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!