Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity. In addition, they studied the survival outcome only, not competing risk outcomes. Therefore, we propose a clustering-based commensurate prior model with random effects for both survival and competing risk outcomes that effectively borrows information based on the degree of comparability between historical and CT data. Simulation results show that the proposed method controls type I errors better and has a lower bias than some competing methods. We apply our method to a phase III CT which compares the effectiveness of bone marrow donated from family members with only partially matched bone marrow versus two partially matched cord blood units to treat leukemia and lymphoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pst.2464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!