Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
Aim: We aim to address the challenge of insufficient depth of field (DOF) in wearable OCT probes for brain imaging in freely moving mice, ensuring high lateral resolution while capturing brain vasculature across varying heights.
Approach: We integrated diffractive optical elements (DOEs) capable of generating beams with an extended DOF into a wearable OCT probe. This design effectively overcomes the traditional trade-off between lateral resolution and DOF, enabling the capture of detailed angiographic images in a dynamic and uncontrolled environment.
Results: The enhanced wearable OCT probe achieved a lateral resolution superior to within a axial range. This setup allowed for high-resolution optical coherence tomography angiography (OCTA) imaging with extended DOF, making it suitable for studying brain vasculature in freely moving mice.
Conclusions: The incorporation of DOEs into the wearable OCT probe represents a significant advancement in wearable biomedical imaging. This technology facilitates the acquisition of high-resolution angiographic images with an extended DOF, thus enhancing the ability to study brain function in awake and naturally behaving animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752921 | PMC |
http://dx.doi.org/10.1117/1.JBO.30.1.016003 | DOI Listing |
J Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFIEEE Biomed Circuits Syst Conf
October 2024
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA.
The proper functioning of the respiratory system is evaluated by monitoring the exchange of blood oxygen and carbon dioxide. While wearable devices for monitoring both blood oxygen and carbon dioxide are emerging, wearable carbon dioxide monitors remain relatively rare. This paper introduces a novel wearable prototype that integrates the measurement of transcutaneous carbon dioxide and peripheral blood oxygen saturation on a miniaturized custom-designed printed circuit board.
View Article and Find Full Text PDFElectronics (Basel)
October 2024
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
This paper outlines a design approach for biomedical wireless power transfer systems with a focus on three-coil inductive links for neonatal intensive care unit applications. The relevant literature has been explored to support the design approach, equations, simulation results, and the process of experimental analysis. The paper begins with a brief overview of various power amplifier classes, followed by an in-depth examination of the most common power amplifiers used in biomedical wireless power transfer systems.
View Article and Find Full Text PDFKnee
January 2025
First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China. Electronic address:
3D Print Addit Manuf
October 2024
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Currently, there is great demand for flexible three-dimensional (3D) printable thermoplastic polyurethane (TPU) wires with excellent ultraviolet (UV) resistance, which have broad application prospects in wearable products. In this study, UV-resistant TPU composites were obtained using a blending modification method. The relationship between the optimized parameters of fused deposition modeling 3D printing and mechanical properties of the TPU composite is discussed using an orthogonal test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!