The plant shikimate pathway directs a significant portion of photosynthetically assimilated carbon into the downstream biosynthetic pathways of aromatic amino acids (AAA) and aromatic natural products. 3-Deoxy-d--heptulosonate 7-phosphate (DAHP) synthase (hereafter DHS) catalyzes the first step of the shikimate pathway, playing a critical role in controlling the carbon flux from central carbon metabolism into the AAA biosynthesis. Previous biochemical studies suggested the presence of manganese- and cobalt-dependent DHS enzymes (DHS-Mn and DHS-Co, respectively) in various plant species. Unlike well-studied DHS-Mn, however, the identity of DHS-Co is still unknown. Here, we show that all three DHS isoforms of exhibit both DHS-Mn and DHS-Co activities in vitro. A phylogenetic analysis of various DHS orthologs and related sequences showed that Arabidopsis 3-deoxy-D--octulosonate-8-phosphate synthase (KDOPS) proteins were closely related to microbial Type I DHSs. Despite their sequence similarity, these Arabidopsis KDOPS proteins showed no DHS activity. Meanwhile, optimization of the DHS assay conditions led to the successful detection of DHS-Co activity from Arabidopsis DHS recombinant proteins. Compared with DHS-Mn, DHS-Co activity displayed the same redox dependency but distinct optimal pH and cofactor sensitivity. Our work provides biochemical evidence that the DHS isoforms of Arabidopsis possess DHS-Co activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750804PMC
http://dx.doi.org/10.1002/pld3.70037DOI Listing

Publication Analysis

Top Keywords

shikimate pathway
12
dhs-mn dhs-co
12
dhs-co activity
12
3-deoxy-d--heptulosonate 7-phosphate
8
7-phosphate dahp
8
manganese- cobalt-dependent
8
dhs
8
dhs isoforms
8
kdops proteins
8
dhs-co
6

Similar Publications

The plant shikimate pathway directs a significant portion of photosynthetically assimilated carbon into the downstream biosynthetic pathways of aromatic amino acids (AAA) and aromatic natural products. 3-Deoxy-d--heptulosonate 7-phosphate (DAHP) synthase (hereafter DHS) catalyzes the first step of the shikimate pathway, playing a critical role in controlling the carbon flux from central carbon metabolism into the AAA biosynthesis. Previous biochemical studies suggested the presence of manganese- and cobalt-dependent DHS enzymes (DHS-Mn and DHS-Co, respectively) in various plant species.

View Article and Find Full Text PDF

Background: Monitoring nitrate and nitrite levels in water is vital for protecting human health, aquatic ecosystems, and regulatory compliance. However, traditional detection methods often involve environmentally harmful chemicals. This study introduces a sustainable alternative by leveraging metabolically engineered E.

View Article and Find Full Text PDF

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Computational Study on the Reaction Mechanism of 5-Enolpyruvylshikimate-3-phosphate Synthase from Nicotiana Tabacum.

ChemistryOpen

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the conversion of 5-enolpyruvate (PEP) and shikimic acid phosphate (S3P) to 5-enolpyruvylshikimic acid-3-phosphate (EPSP), releasing inorganic phosphate. This reaction is the sixth step of the shikimate pathway, which is a metabolic pathway used by microorganisms and plants for the biosynthesis of aromatic amino acids and folates but not in mammals. In the present study, the detailed reaction mechanism of EPSPS from Nicotiana tabacum (NtEPSPS) is revealed by quantum chemical calculations with the cluster approach.

View Article and Find Full Text PDF

Identification of novel 3-dehydroquinate dehydratase (DHQD) inhibitors for anti-tuberculosis activity: insights from virtual screening, molecular docking, and dynamics simulations.

In Silico Pharmacol

January 2025

Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006 South Africa.

Tuberculosis (TB) remains a pressing global health concern, causing substantial mortality and morbidity despite existing drugs and vaccines. The escalating challenge of drug-resistant TB underscores the critical need for novel medications. This study focuses on the enzyme 3-hydroquinate dehydratase (DHQD) in the shikimate pathway of (Mtb), essential for Mtb growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!