Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.

Methods: Energy-related features of glioma were characterized through integrative analyses of multiple datasets, including bulk, single-cell, and spatial transcriptome profiling. The glioma energy metabolic subtypes were constructed using the R package ConsensusClusterPlus. Kaplan-Meier analysis was conducted to compare clinical outcomes between different metabolic groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological functions of genes of interest. Cell-cell communication analysis was performed at single-cell resolution using the R package CellChat and at spatial resolution using the standard stLearn pipeline.

Results: Glioma samples were stratified into two prognostic subtypes. Group 1, enriched in the glutaminolysis pathway, had better clinical outcomes. In contrast, Group 2 exhibited high activities in glycolysis, the pentose phosphate pathway, and fatty acid oxidation, correlating with decreased survival time. Group 1 samples were predominantly located in the peripheral region and had a high composition of neuron cells. Group 2, however, had increased infiltration of tumor-promoting immune cells, such as M2 macrophages, and was characterized by traits of invasion, hypoxia, and immunity. Lastly, cell-cell communications were compared across different tumor regions, and the / ligand-receptor pair was validated using spatial transcriptomic data.

Conclusions: Our work revealed the metabolic heterogeneity in glioma by developing a new classification system with significant prognostic and therapeutic value. Single-cell transcriptional profiles offer novel insights into tumor metabolic reprogramming, which could enhance therapies tailored to cell- or patient-specific metabolic patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750464PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41241DOI Listing

Publication Analysis

Top Keywords

metabolic
10
bulk single-cell
8
revealed metabolic
8
metabolic heterogeneity
8
metabolic subtypes
8
classification system
8
glycolysis pentose
8
pentose phosphate
8
phosphate pathway
8
pathway fatty
8

Similar Publications

Newborn screening for common genetic variants associated with permanent hearing loss: Implementation in Ontario and a review of the first 3 years.

Genet Med

January 2025

Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa. Electronic address:

Purpose: Universal newborn hearing screening (UNHS) programs using audiometric techniques alone are limited in ability to detect non-congenital childhood permanent hearing loss (PHL). In 2019, Ontario launched universal newborn screening (NBS) for PHL risk factors: congenital cytomegalovirus (cCMV) and 22 common variants in GJB2 and SLC26A4. Here we describe our experience with genetic risk factor screening.

View Article and Find Full Text PDF

Higher PEPC activity and vein density contribute to improve cotton leaf water use efficiency under water stress.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

Plants with the C photosynthetic pathway can withstand water stress better than plants with C metabolism. However, it is unclear whether C photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L.

View Article and Find Full Text PDF

Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia.

Zool Res

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.

Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.

View Article and Find Full Text PDF

The effect of physical cues on platelet storage lesion.

Hematology

December 2025

Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.

Background: Platelet concentrates play an important role in clinical treatment such as platelet function disorders and thrombocytopenia. In the process of preparation and storage of platelets, centrifugation, leukofiltration, and agitation will cause morphological changes and impaired function of platelets, which is associated with the increase of platelet transfusion refractoriness, and named as platelet storage lesion (PSL).

Method: This paper proposes three major operations (centrifugation, agitation, and leukofiltration) that platelets experience during the preparation and storage process, to explore the effect of physical cues on PSL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!