Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery. Upon drought stress, no significant changes occurred in the chloroplast ultrastructure, chlorophyll content, 77K fluorescence emission spectra and maximal quantum efficiency of PSII (Qy dark), but the actual quantum efficiency of PSII (Qy light) decreased, the amounts of PSI-LHCII complexes and PSII monomers declined, and that of PSII supercomplexes increased. Thickness of the leaf and of the adaxial hypodermis, chloroplast length and granum repeat distance (RD) values decreased upon drought stress, as shown by light microscopy and SANS, respectively. Because of the very slight (nm-range) changes in RD values, the large biological variability (significant differences in RD values among the leaves and studied leaf regions) and the invasive sampling required for this method, transmission electron microscopy (TEM) hardly showed significant differences. On the other side, in situ SANS analyses provided a unique insight in vivo into the fast structural recovery of the granum structure of drought-stressed leaves, which happened already 18 h after re-watering, while functional and biochemical recovery took place on a longer time scale.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14621DOI Listing

Publication Analysis

Top Keywords

drought stress
20
stress subsequent
12
subsequent recovery
12
ctenanthe setosa
8
setosa roscoe
8
roscoe eichler
8
quantum efficiency
8
efficiency psii
8
drought
6
stress
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!