Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall component on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall component and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange. Drought stress resulted in a significant thickening of cell walls and a decrease in gm. Concurrently, drought stress increased the content of chelator-soluble pectin and cellulose while reducing hemicellulose content. The alignment of cellulose microfibrils became more parallel and their diameter increased under drought conditions, suggesting a decrease in cell wall effective porosity which coincides with the observed reduction in gm. This research demonstrates that reduced gm typically observed under drought stress is related not only to thickened cell walls, but also to ultra-anatomical and compositional variations. Specifically, increases in cellulose content, diameter, and a highly aligned arrangement of cellulose microfibrils collectively contributed to an increase in Tcw, which, together with increases in chelator-soluble pectin content, resulted in an increased cell wall resistance to CO2 diffusion.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erae467DOI Listing

Publication Analysis

Top Keywords

cell wall
28
drought stress
20
chelator-soluble pectin
12
cell walls
12
cell
10
mesophyll conductance
8
pectin content
8
cotton plants
8
co2 diffusion
8
wall component
8

Similar Publications

Lipid-based formulation of antifungal small drugs is used to mitigate drug toxicity while retaining effective antifungal activity. Our previous work demonstrated a method to enhance the antifungal properties of a chitin-binding domain (LysM) and catalytic domain (CatD) of antifungal chitinase by microbial transglutaminase (MTG)-mediated palmitoylation. Herein, we studied the effect of artificial cholesterylation of LysM and CatD, both of which were site-specifically modified using an MTG-catalyzed crosslinking.

View Article and Find Full Text PDF

Zinc Ion Dyshomeostasis in Autism Spectrum Disorder.

Nutr Res Rev

March 2025

Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, United Arab Emirates.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with significant social, communicative, and behavioral challenges, and its prevalence is increasing globally at an alarming rate. Children with ASD often have nutritional imbalances, and multiple micronutrient deficiencies. Among these, zinc (Zn) deficiency is prominent and has gained extensive scientific interest over the past few years.

View Article and Find Full Text PDF

Plant epicuticular waxes (EW) play a critical role in defending against biotic and abiotic stresses. Notably, onions () present a distinctive case where the mutant with defect in leaf and stalk EW showed resistance to thrips compared with the wild type with integral EW. We identified a premature stop codon mutation in the gene, an ortholog of gene in that has been proved essential for the biosynthesis of very long-chain fatty acids (VLCFAs), in the onions with glossy leaf and stalks in our experiments.

View Article and Find Full Text PDF

The high sequence and structural similarities between BRASSINOSTEROID INSENSITIVE 1 (BRI1) brassinosteroid (BR) receptors of Arabidopsis (AtBRI1) and sorghum (SbBRI1) prompted us to study the functionally conserved roles of BRI1 in both organisms. Introducing sorghum SbBRI1 in Arabidopsis bri1 mutants restores defective growth and developmental phenotypes to wild-type levels. Sorghum mutants for SbBRI1 show defective BR sensitivity and impaired plant growth and development throughout the entire sorghum life cycle.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode Caenorhabditis elegans provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy and a single tropomyosin gene, lev-11, that produces seven isoforms. Three higher molecular weight isoforms regulate the contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!