Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 6.2 million Americans aged 65 and older, particularly women. Along with AD's main hallmarks (formation of β-amyloid plaques and tau neurofibrillary tangles), there are vascular alterations that occurs in AD pathology. Adenosine A2 receptor (AR) is one of the key factors of brain vascular autoregulation and is overexpressed in AD patients. Our previous findings suggest that protein arginine methyltransferase 4 (PRMT4) is overexpressed in AD, which leads to decrease in cerebral blood flow in aged female 3xTg mice. We aimed to investigate the mechanism behind AR signaling in the regulation of brain perfusion and blood-brain barrier integrity in age and sex-dependent 3xTg mice, and if it is related to PRMT4. Istradefylline, a highly selective AR antagonist, was used to modulate AR signaling. Aged female 3xTg and C57BL/6 J mice were evaluated for brain perfusion (via laser speckle) and cognitive function (via open field, T-maze and novel object recognition). Our results suggest that modulation of AR signaling in aged female 3xTg increased cerebral perfusion by decreasing PRMT4 expression, restored the levels of APP and tau, maintained blood-brain barrier integrity by maintaining the expression of tight junction proteins, and preserved functional learning/memory.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11357-025-01526-8DOI Listing

Publication Analysis

Top Keywords

brain perfusion
12
aged female
12
female 3xtg
12
cognitive function
8
alzheimer's disease
8
3xtg mice
8
blood-brain barrier
8
barrier integrity
8
signaling aged
8
blockade improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!