The effectiveness of state-of-the-art cross-linking strategies and mass spectrometry (MS) detection was explored in an important biological context, namely, the ubiquitin-proteasome system, which is responsible for most of the regulated protein degradation in eukaryotic cells. The locations of possible binding sites on the 19S proteasome regulatory particle for Lys linked polyubiquitin chains were examined using cross-linking strategies and MS based detection by comparing two types of cross-linkers: a (bis)-sulfosuccinimidyl suberate (BS) and diethyl suberothioimidate (DEST). The well-established BS-based strategy produced 328 cross-linked peptides; however, no ubiquitin-19S cross-links were observed. The recently developed DEST-based approach produced fewer (146) linkages overall, but these included six ubiquitin-19S cross-links. Some of these cross-links are predicted by the canonical view of ubiquitin recognition, but others suggest novel insights into how the proteasome recognizes its substrates. A discussion of these strategies and structural implications for polyubiquitin-proteasome binding is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.4c00381 | DOI Listing |
J Am Soc Nephrol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
Purpose: Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Institute of Science and Technology, Division of Periodontics, São Paulo State University (Unesp), Av. Eng. Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
Objective: This study aimed to compare the salivary protein profile in individuals with Type 2 Diabetes Mellitus (DM2) and periodontitis and their respective controls.
Methods: Eighty participants were included in the study. The four groups were formed by individuals with DM2 and periodontitis (DM2 + P, n = 20), DM2 without periodontitis (DM2, n = 20), periodontitis without DM2 (P, n = 20) and individuals without periodontitis and without DM2 (H, n = 20).
Anal Bioanal Chem
January 2025
Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
An increasing number of cannabis-related products have become available and entered the market, particularly those containing cannabidiol (CBD) and Δ-tetrahydrocannabinol (Δ-THC). Analytical methods for cannabinoids in urine have been described extensively in the literature. However, methods providing good resolution for distinguishing interferences from THC positional isomers are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!