Mechanistic insights into chemotherapy-induced circadian disruption using rodent models.

Trends Neurosci

Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption. Here, we review physiological, molecular, and behavioral evidence of central and peripheral circadian disruption in various rodent models of chemotherapy and discuss possible mechanisms driving these circadian disruptions. Overall, restoring circadian rhythms following treatment-induced disruptions may be a novel target by which to improve the health and quality of life of survivors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tins.2024.12.011DOI Listing

Publication Analysis

Top Keywords

circadian disruption
12
rodent models
12
disruption rodent
8
models chemotherapy
8
quality life
8
circadian rhythms
8
circadian
6
mechanistic insights
4
insights chemotherapy-induced
4
chemotherapy-induced circadian
4

Similar Publications

Effects of sex, mating status, and genetic background on circadian behavior in .

Front Neurosci

January 2025

Department of Neuroscience, Farber Institute for Neurosciences, Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, United States.

Circadian rhythms play a crucial role in regulating behavior, physiology, and health. Sexual dimorphism, a widespread phenomenon across species, influences circadian behaviors. Additionally, post-mating physiological changes in females are known to modulate various behaviors, yet their effects on circadian rhythms remain underexplored.

View Article and Find Full Text PDF

Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations.

View Article and Find Full Text PDF

The gut microbiota predicts and time-restricted feeding delays experimental colitis.

Gut Microbes

December 2025

Department of Microbiome Research and Applied Bioinformatics, Institute for Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.

The etiology of inflammatory bowel disease (IBD) remains unclear, treatment options unsatisfactory and disease development difficult to predict for individual patients. Dysbiosis of the gastrointestinal microbiota and disruption of the biological clock have been implicated and studied as diagnostic and therapeutic targets. Here, we examine the relationship of IBD to biological clock and gut microbiota by using the IL-10 deficient () mouse model for microbiota-dependent spontaneous colitis in combination with altered (4 h/4 h) light/dark cycles to disrupt and time-restricted feeding (TRF) to restore circadian rhythmicity.

View Article and Find Full Text PDF

Mechanistic insights into chemotherapy-induced circadian disruption using rodent models.

Trends Neurosci

January 2025

Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:

Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption.

View Article and Find Full Text PDF

Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research.

Philos Trans R Soc Lond B Biol Sci

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.

The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!