Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair.

Carbohydr Polym

Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:

Published: March 2025

Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration. To develop such an advanced cell-free scaffold, a bacterial cellulose (BC) substrate is elaborately modified through layer-by-layer assembly of heparin and collagen (H/C), followed by glutaraldehyde crosslinking, resulting in a biomimetic nanofibrous scaffold with optimized mechanical properties and reduced salt crystal deposition. Critically, the scaffold is functionalized with anti-CD29 antibodies, enabling selective in situ capture of urine-derived stem cells (USCs) without compromising their viability. The (H/C)-modified BC scaffold exhibits exceptional swelling and extracellular matrix-like architecture, which mirrors the natural bladder environment. Fluorescent immunostaining confirms uniform antibody grafting, confirming the efficacy of this modified biomaterial in attracting and retaining USCs. Overall, this study introduces a BC-based scaffold that has been innovatively modified with CD29, enabling the selective capture of USCs from urine. This innovative acellular biomaterial represents a promising acellular strategy to address the challenges posed by compromised cellular conditions during bladder reconstruction, offering a novel avenue for regenerative bladder therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.123150DOI Listing

Publication Analysis

Top Keywords

capture urine-derived
8
urine-derived stem
8
stem cells
8
compromised cellular
8
enabling selective
8
bladder
7
scaffold
6
bacterial cellulose-based
4
cellulose-based scaffold
4
modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!