The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats.

J Physiol Sci

Institute of Sports Science, Sichuan University, Chengdu, People's Republic of China; School of Physical Education and Sports, Sichuan University, Chengdu, People's Republic of China; Department of Physical Education, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, China. Electronic address:

Published: January 2025

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12576-024-00902-xDOI Listing

Publication Analysis

Top Keywords

mitochondrial content
12
increase mitochondrial
12
gpr81-camp-pka pathway
8
physical activity
8
skeletal muscle
8
camp-pka pathway
8
mitochondrial biogenesis
8
biogenesis content
8
pathway
5
mitochondrial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!