Despite decades of advancements in diagnostic MRI, 30-50% of temporal lobe epilepsy (TLE) patients remain categorized as "non-lesional" (i.e., MRI negative or MRI-) based on visual assessment by human experts. MRI- patients face diagnostic uncertainty and significant delays in treatment planning. Quantitative MRI studies have demonstrated that MRI- patients often exhibit a TLE-specific pattern of temporal and limbic atrophy that may be too subtle for the human eye to detect. This signature pattern could be successfully translated into clinical use via artificial intelligence (AI) advances in computer-aided MRI interpretation, thereby improving the detection of brain "lesional" patterns associated with TLE. Here, we tested this hypothesis by employing a three-dimensional convolutional neural network (3D CNN) applied to a dataset of 1,178 scans from 12 different centers. 3D CNN was able to differentiate TLE from healthy controls with high accuracy (85.9% ± 2.8), significantly outperforming support vector machines based on hippocampal (74.4% ± 2.6) and whole-brain (78.3% ± 3.3) volumes. Our analysis subsequently focused on a subset of patients who achieved sustained seizure freedom post-surgery as a gold standard for confirming TLE. Importantly, MRI- patients from this cohort were accurately identified as TLE 82.7% ± 0.9 of the time, an encouraging finding since clinically these were all patients considered to be MRI- (i.e., not radiographically different than controls). The saliency maps from the CNN revealed that limbic structures, particularly medial temporal, cingulate, and orbitofrontal areas, were most influential in classification, confirming the importance of the well-established TLE signature atrophy pattern for diagnosis. Indeed, the saliency maps were similar in MRI+ and MRI- TLE groups, suggesting that even when humans cannot distinguish more subtle levels of atrophy, these MRI- patients are on the same continuum common across all TLE patients. As such, AI can identify TLE lesional patterns and AI-aided diagnosis has the potential to greatly enhance the neuroimaging diagnosis of TLE and redefine the concept of "lesional" TLE.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaf020DOI Listing

Publication Analysis

Top Keywords

mri- patients
16
tle
11
temporal lobe
8
lobe epilepsy
8
artificial intelligence
8
patients
8
tle patients
8
saliency maps
8
mri-
7
redefining diagnostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!