Introduction: Activation of the inflammatory response system is involved in the pathogenesis of generalized anxiety disorder (GAD). The purpose of this study was to identify and characterize inflammatory biomarkers in the diagnosis of GAD based on machine learning algorithms.
Methods: The evaluation of peripheral immune parameters and lymphocyte subsets was performed on patients with GAD. Multivariable linear regression was used to explore the association between lymphocyte subsets and the severity of GAD. Receiver operating characteristic (ROC) analysis was used to determine the predictive value of these immunological parameters for GAD. Machine learning technology was applied to classify the collected data from patients in the GAD and healthy control groups.
Results: Of the 340 patients enrolled, 171 were GAD patients, and 169 were non-GAD patients as healthy control. The levels of neutrophil, monocytes, and systemic immune-inflammation index (SII) were significantly elevated in GAD patients (p < 0.01), and the count and proportion of immune cells, including CD3+CD4+ T cells, CD3+CD8+ T cells, CD19+ B cells, and CD3-CD16+CD56+ NK cells (p < 0.001), have undergone large changes. The classification analysis conducted by machine learning using a weighted ensemble-L2 algorithm demonstrated an accuracy of 95.00 ± 2.04% in assessing the predictive value of these lymphocyte subsets in GAD. In addition, the feature importance analysis score is 0.255, which was much more predictive of GAD severity than for other lymphocyte subsets.
Conclusion: In the presented work, we show the level of lymphocyte subsets altered in GAD. Lymphocyte subsets, specifically CD3+CD4+ T %, can serve as neuroinflammatory biomarkers for GAD diagnostics. Furthermore, the application of machine learning offers a highly efficient approach for investigating neuroinflammatory biomarkers and predicting GAD. Our research has provided novel insights into the involvement of cellular immunity in GAD and highlighted the potential predictive value and therapeutic targets of lymphocyte subsets in this disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000543646 | DOI Listing |
J Immunol
January 2025
Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States.
The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity.
View Article and Find Full Text PDFJ Immunol
January 2025
Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States.
Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.
View Article and Find Full Text PDFJ Immunol
February 2025
La Jolla Institute for Immunology, La Jolla, CA, United States.
A fundamental dichotomy in lymphocytes separates adaptive T and B lymphocytes, with clonally expressed antigen receptors, from innate lymphocytes, which carry out more rapid responses. Some T cell populations, however, are intermediates between these 2 poles, with the capacity to respond rapidly through T cell receptor activation or by cytokine stimulation. Here, using publicly available datasets, we constructed linear mixed models that not only define a gradient of innate gene expression in common for mouse innate-like T cells, but also are applicable to other mouse T lymphoid populations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.
Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.
View Article and Find Full Text PDFClin Rev Allergy Immunol
March 2025
School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
Uveitis involves a complex interplay of immune cell infiltration and cytokine imbalances, with Th17 cells playing a central role in this process. Th17 cells contribute to disease pathogenesis by promoting inflammation, recruiting additional immune cells, and directly damaging retinal tissues. This review discusses the current knowledge on therapeutic strategies targeting Th17-related cytokines, including cytokine blockade, small molecule inhibitors, and immunomodulatory approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!