A preliminary study of combined toxicity and underlying mechanisms of imidacloprid and cadmium coexposure using a multiomics integration approach.

Toxicology

College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China. Electronic address:

Published: January 2025

Imidacloprid (IMI) and cadmium (Cd) have been shown to be harmful to mammals separately, but their combined toxicity to mammals remains largely unknown. In this study, biochemical analysis (oxidative stress and serum indicators of liver and kidney function), pathological sections and multiomics (metabolomics and transcriptomics) methods were used to investigate the changes and mechanisms of liver and kidney in mice coexposed to IMI and Cd. Biochemical analysis and pathological section results showed that oxidative stress, organ function, and cell damage were aggravated after the combination of the two methods. Omics results revealed the following mechanism: When mouse liver and kidney cells were threatened by the external environment, mitochondrial DNA was inhibited, which leads to changes in energy metabolism. In this process, lipid metabolism and amino acid metabolism were disordered, resulting in the inhibition of substances related to lipid metabolism and amino acid metabolism that protect the body from oxidative damage, and then showed more serious liver and kidney oxidative stress and liver and kidney function and cell damage. This research offers novel insights for the assessment of the safety profile associated with the concurrent exposure of the two chemicals in mammalian species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2025.154063DOI Listing

Publication Analysis

Top Keywords

liver kidney
20
oxidative stress
12
combined toxicity
8
biochemical analysis
8
kidney function
8
function cell
8
cell damage
8
lipid metabolism
8
metabolism amino
8
amino acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!