ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos. However, the , bottom-up design of such systems remains challenging, primarily because the kinetic characteristics and energy aspects yielding bifurcation have not yet been globally defined. We herein review our recent work that focuses on the design and functional analysis of peptide-based networks, propelled by replication reactions and exhibiting bistable behavior. Furthermore, we rationalize and discuss their exploitation and implementation as variable signaling motifs in homogeneous and heterogeneous environments.The bistable reactions constitute reversible second-order autocatalysis as positive feedback to generate two distinct product distributions at steady state (SS), the low-SS and high-SS. Quantitative analyses reveal that a phase transition from simple reversible equilibration dynamics into bistability takes place when the system is continuously fueled, using a reducing agent, to keep it far from equilibrium. In addition, an extensive set of experimental, theoretical, and simulation studies highlight a defined parameter space where bistability operates.Analogous to the arrangement of protein-based bistable motifs in intracellular signaling pathways, sequential concatenation of the synthetic bistable networks is used for signal processing in homogeneous media. The cascaded network output signals are switched and erased or transduced by manipulating the order of addition of the components, allowing it to reach "on demand" either the low-SS or high-SS. The pre-encoded bistable networks are also useful as a programming tool for the downstream regulation of nanoscale materials properties, bridging together the Systems Chemistry and Nanotechnology fields. In such heterogeneous cascade pathways, the outputs of the bistable network serve as input signals for consecutive nanoparticle formation reaction and growth processes, which-depending on the applied conditions-regulate various features of (Au) nanoparticle shape and assembly.Our work enables the design and production of various signaling apparatus that feature higher complexity than previously observed in chemical networks. Future studies, briefly discussed at the end of the Account, will be directed at the design and analysis of more elaborate functionality, such as bistability under flow conditions, multistability, and oscillations. We propose that a profound understanding of the design principles facilitating the replication-based bistability and related functions bear implications for exploring the origin of protein functionality prior to the highly evolved replication-translation-transcription machinery. The integration of our peptide-based signaling motifs within future synthetic cells seems to be a straightforward development of the two alternating states as memory and switch elements for controlling cell growth and division and even communication among different cells. We furthermore suggest that such systems can be introduced into living cells for various biotechnology applications, such as switches for cell temporal and spatial manipulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.4c00703 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China.
The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.
View Article and Find Full Text PDFOncol Lett
March 2025
Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.
Neoadjuvant chemoradiotherapy (nCRT) is the standard treatment for locally advanced rectal cancer (LARC). Pathological complete regression is closely linked to disease outcomes. However, biomarkers predicting nCRT response and patient survival are lacking for LARC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!