Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons. The underlying mechanism is the intrinsic stereoselectivity between DH and fatty acid-binding protein 5 (FABP5), which facilitates the transportation of fatty acids bound to FABP5 into the mitochondria and endoplasmic reticulum, subsequently augmenting fatty acid oxidation (FAO) levels and enriching sphingosine biosynthesis. In the rat SCI model, DH significantly improved the Basso-Beattie-Bresnahan (BBB) locomotor scores (over 3-fold) and the hindlimbs' compound muscle action potential (over 4-fold) compared with the untreated group, conveying a significant return of functional recovery. This finding of nanoscale chirality-dependent NSCs metabolic reprogramming provides insights into understanding stem cell physiology and presents opportunities for regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c15770DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
12
neural stem
8
stem cells
8
neural
4
reprogramming neural
4
cells chiral
4
chiral nanofiber
4
nanofiber spinal
4
spinal cord
4
cord injury
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!