Ice-free areas are habitats for most of Antarctica's terrestrial biodiversity. Although fungal communities are an important element of these habitats, knowledge of their assemblages and ecological functions is still limited. Herein, we investigated the diversity, composition, and ecological functionality of fungal communities inhabiting sediments from ice-free areas across pristine and anthropogenically impacted sites in the Fildes Peninsula on King George Island, Antarctica. Samples were collected from both pristine and disturbed areas. We used the internal transcribed spacer (ITS1) region via Illumina sequencing of 34 sediment samples for fungal identification. The Ascomycota (14.6%) and Chytridiomycota (11.8%) were the most dominant phyla, followed by Basidiomycota (8.1%), Rozellomycota (7.0%), Mucoromycota (4.0%), while 34.9% of the fungal diversity remained unidentified. From a total of 1073 OTUs, 532 OTUs corresponded to 114 fungal taxa at the genus level, and 541 OTUs remained unassigned taxonomically. The highest diversity, with 18 genera, was detected at site A-3. At the genus level, there was no preference for either pristine or disturbed sites. The most widely distributed genera were Betamyces (Chytridiomycota), occurring in 29 of the 34 sites, and Thelebolus (Ascomycota), detected in 8 pristine sites and 7 disturbed sites. The Glomeraceae gen. incertae sedis was more common in disturbed sites. A total of 23 different ecological guilds were recorded, with the most abundant guilds being undefined saprotrophs, plant pathogens, plant saprotrophs, pollen saprotrophs, and endophytes. The fungal communities did not show significant differences between pristine and disturbed sites, suggesting that the anthropogenic impact is either not too intense or prolonged, that the spatial distance between the sampled sites is small, and/or that the environmental factors are similar. Although our study revealed a high fungal diversity with various ecological specializations within these communities, nearly one-third of the diversity could not be assigned to any specific taxonomic category. These findings highlight the need for further taxonomic research on fungal species inhabiting ice-free areas. Without identifying the species present, it is difficult to assess potential biodiversity loss due to environmental changes and/or human activities.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317571PLOS

Publication Analysis

Top Keywords

pristine disturbed
16
disturbed sites
16
ice-free areas
12
fungal communities
12
fungal
9
disturbed areas
8
fildes peninsula
8
peninsula king
8
king george
8
george island
8

Similar Publications

High diversity of fungal ecological groups from ice-free pristine and disturbed areas in the Fildes Peninsula, King George Island, Antarctica.

PLoS One

January 2025

Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile.

Ice-free areas are habitats for most of Antarctica's terrestrial biodiversity. Although fungal communities are an important element of these habitats, knowledge of their assemblages and ecological functions is still limited. Herein, we investigated the diversity, composition, and ecological functionality of fungal communities inhabiting sediments from ice-free areas across pristine and anthropogenically impacted sites in the Fildes Peninsula on King George Island, Antarctica.

View Article and Find Full Text PDF

Fabrication of TeNT/TeO heterojunction based sensor for ultrasensitive detection of NO.

J Hazard Mater

January 2025

School of Integrated Circuits, Dalian University of Technology, Dalian, Liaoning 116024, China. Electronic address:

Tellurium nanotubes (TeNT) heterojunction with Tellurium oxide (TeO) were prepared by in situ oxidation at elevated temperatures in air. The chemiresistive type NO sensor was then fabricated by depositing the synthesized TeNT/TeO on the integrated gold electrodes. The response of the TeNT/TeO based sensor to 600 ppb NO was 38.

View Article and Find Full Text PDF

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

Little is known about the behaviors of African equatorial rain forest mosquito species and their potential role as sylvatic and bridge-vectors of various pathogens of animal and public health. In 2016 and 2017, the diversity and sources of water supporting immature development of mosquitoes in Talangaye Rainforest (South West Cameroon) before, during and after deforestation were investigated. Mosquito eggs, larvae and pupae were collected from 12 natural, seminatural, and artificial water sources and reared to adults.

View Article and Find Full Text PDF

KOH-modified biochar enhances nitrogen metabolism of the chloroquine phosphate-disturbed anammox: Physical binding, EPS modulation and versatile metabolic hierarchy.

J Hazard Mater

November 2024

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China. Electronic address:

Article Synopsis
  • Chloroquine phosphate (CQ) is toxic to the anammox process, making detoxification necessary for effective wastewater treatment.
  • KOH-modified biochar improves detoxification of CQ and enhances nitrogen metabolism by increasing its electron exchange capacity (EEC) and nitrogen removal efficiency compared to regular biochar.
  • Metagenomic analysis shows that modified biochar encourages the growth of beneficial microorganisms, particularly anammox bacteria, highlighting its potential in managing micropollutant stress in wastewater treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!