Citrus farming is one of the major agricultural sectors of Pakistan and currently represents almost 30% of total fruit production, with its highest concentration in Punjab. Although economically important, citrus crops like sweet orange, grapefruit, lemon, and mandarins face various diseases like canker, scab, and black spot, which lower fruit quality and yield. Traditional manual disease diagnosis is not only slow, less accurate, and expensive but also relies heavily on expert intervention. To address these issues, this research examines the implementation of an automated disease classification system using deep learning and optimal feature selection. The system incorporates data augmentation and transfer learning with pre-trained models such as DenseNet-201 and AlexNet to improve diagnostic accuracy, efficiency, and cost-effectiveness. Experimental results on a citrus leaves dataset show an impressive 99.6% classification accuracy. The proposed framework outperforms existing methods, offering a robust and scalable solution for disease detection in citrus farming, contributing to more sustainable agricultural practices.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316081 | PLOS |
Health Aff (Millwood)
January 2025
Eric Horvitz, Microsoft, Redmond, Washington.
The field of artificial intelligence (AI) has entered a new cycle of intense opportunity, fueled by advances in deep learning, including generative AI. Applications of recent advances affect many aspects of everyday life, yet nowhere is it more important to use this technology safely, effectively, and equitably than in health and health care. Here, as part of the National Academy of Medicine's Vital Directions for Health and Health Care: Priorities for 2025 initiative, which is designed to provide guidance on pressing health care issues for the incoming presidential administration, we describe the steps needed to achieve these goals.
View Article and Find Full Text PDFPurpose: Predicting long-term anatomical responses in neovascular age-related macular degeneration (nAMD) patients is critical for patient-specific management. This study validates a generative deep learning (DL) model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.
Methods: A total of 533 eyes from 513 treatment-naïve nAMD patients were analyzed.
ACS Nano
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China.
In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!