Therapeutic gene target prediction using novel deep hypergraph representation learning.

Brief Bioinform

Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea.

Published: November 2024

Identifying therapeutic genes is crucial for developing treatments targeting genetic causes of diseases, but experimental trials are costly and time-consuming. Although many deep learning approaches aim to identify biomarker genes, predicting therapeutic target genes remains challenging due to the limited number of known targets. To address this, we propose HIT (Hypergraph Interaction Transformer), a deep hypergraph representation learning model that identifies a gene's therapeutic potential, biomarker status, or lack of association with diseases. HIT uses hypergraph structures of genes, ontologies, diseases, and phenotypes, employing attention-based learning to capture complex relationships. Experiments demonstrate HIT's state-of-the-art performance, explainability, and ability to identify novel therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaf019DOI Listing

Publication Analysis

Top Keywords

deep hypergraph
8
hypergraph representation
8
representation learning
8
hit hypergraph
8
therapeutic
5
therapeutic gene
4
gene target
4
target prediction
4
prediction novel
4
novel deep
4

Similar Publications

Therapeutic gene target prediction using novel deep hypergraph representation learning.

Brief Bioinform

November 2024

Division of Artificial Intelligence, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea.

Identifying therapeutic genes is crucial for developing treatments targeting genetic causes of diseases, but experimental trials are costly and time-consuming. Although many deep learning approaches aim to identify biomarker genes, predicting therapeutic target genes remains challenging due to the limited number of known targets. To address this, we propose HIT (Hypergraph Interaction Transformer), a deep hypergraph representation learning model that identifies a gene's therapeutic potential, biomarker status, or lack of association with diseases.

View Article and Find Full Text PDF

Heterogeneous entity representation for medicinal synergy prediction.

Bioinformatics

December 2024

School of Data Science and Society, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.

Motivation: Forecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy.

View Article and Find Full Text PDF

To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students' long-term learning sequences and identify students' cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.

View Article and Find Full Text PDF

While deep brain stimulation (DBS) remains an effective therapy for Parkinson's disease (PD), sources of variance in patient outcomes are still not fully understood, underscoring a need for better prognostic criteria. Here we leveraged routinely collected T1-weighted (T1-w) magnetic resonance imaging (MRI) data to derive patient-specific measures of brain structure and evaluate their usefulness in predicting changes in PD medications in response to DBS. Preoperative T1-w MRI data from 231 patients with PD were used to extract regional measures of fractal dimension (FD), sensitive to the structural complexities of cortical and subcortical areas.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!